DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

GYROKINETIC SIMULATIONS OF MAGNETIC FUSION PLASMAS: NUMERICAL CHALLENGES

V. Grandgirard, Y. Asahi^[1], J. Bigot^[2], E. Caschera, G. Dif-Pradalier, P. Donnel, X. Garbet, Ph. Ghendrih, G. Latu, Ch. Passeron, J. Richard, Y. Sarazin

CEA, IRFM, 13108 Saint-Paul-lez-Durance Cedex, France
[1] National Institutes for Quantum and Radiological Science and Technology, 039-3212, Rokkasho, Aomori, Japan
[2] Maison de la simulation, CEA Saclay, FR-91191 Gif sur Yvette

Marseille – November 29, 2018

Main challenges for Magnetic Fusion

Goals of fusion researches: To control fusion reactions on earth that occur naturally in sun for instance

- Fusion reactions only at high temperatures (~150 Million °C)
- How to confine turbulent plasmas ?
- Most advanced concept = Tokamak
- Main goals of ITER (Cadarache) ~2025
 - International project under construction
 - To demonstrate the scientific and technological feasibility of fusion energy on earth, thus leading to a reliable source of energy with low environmental impacts.
 - Main goals of WEST (IRFM) ~2017
 - Upgrade of Tore Supra french tokamak exploits at IRFM CEA for almost 30 years
 - Tests of ITER like actively cooled divertor elements

D+T→⁴He+n p+p

Plasma

volume

20 m³

Cea ITER building site at Cadarache

magnetic toroidal geometry (r, θ, φ)

Turbulence generates loss of heat and particles

- Confinement properties of the magnetic configuration
- Understanding, predicting and controlling turbulence is a subject of utmost importance
- Tokamak plasmas weakly collisional

 \rightarrow Kinetic approach is mandatory

- 1. Gyrokinetic codes for plasma turbulence
- 2. GYSELA code: How to treat kinetic electrons ?
 - Increase code Parallelization
 - → Prepare GYSELA to Exascale machine
 - Separation of dynamics (//, \perp)
 - → Weak discretization in // direction
 - Heavy electrons
 - \rightarrow spatial / temporal discretization x (m_i/m_e)²
- 3. GYSELA-X future code: Exascale core-edge simulations in X-point magnetic configuration
 - Numerical challenges

Gyrokinetic plasma turbulence simulations

- Kinetic theory: 6D distribution function of particles (3D in space + 3D in velocity) $F_s(r, \theta, \varphi, v_{\parallel}, v_{\perp}, \alpha)$
- Fusion plasma turbulence is low frequency:

 $\omega_{turb} \sim 10^5 s^{-1} \ll \omega_{ci} \sim 10^8 s^{-1}$

- Phase space reduction 6D to 5D: fast gyro-motion is averaged out
 - Adiabatic invariant: magnetic momentum $\mu = m_s v_\perp^2/(2B)$
 - Velocity drifts of guiding-centers
- Large reduction memory / CPU time
- Complexity of the system

Gyrokinetic theory: 5D distribution function of guiding-centers $\overline{F}_s(r, \theta, \varphi, v_{G\parallel}, \mu)$ where μ parameter

CEA | V. Grandgirard

22 References for modern GK derivation

- For an overview and a modern formulation of the gyrokinetic derivation, see the review paper by A.J. Brizard and T.S. Hahm, *Foundations of nonlinear gyrokinetic theory*, Rev. Mod. Phys (2007).
- This new approach is based on Lagrangian formalism and Lie perturbation theory (see *e.g.* J.R Cary [*Physics Reports (1981)*], J.R Cary and Littlejohn [*Annals of Physics (1983)*]
- The advantage of this approach is to preserve the first principles by construction, such as the symmetry and conservation properties of the Vlasov equation – particle number, momentum, energy and entropy.
- N. Tronko et al., Hierarchy of second order gyrokinetic Hamiltonian models for particle-in-cell codes, Plasma Physics and Controlled Fusion (2017)

GK codes require state-of-the-art HPC (1/2)

- Gyrokinetic codes require state-of-the-art HPC techniques and must run efficiently on several thousand processors
 - Non-linear 5D simulations + multi-scale problem in space and time
 - $\rho_i \rightarrow \text{machine size } a : \rho_* \equiv \rho_i / a \ll 1 \ (\rho_*^{\text{ITER}} \approx 10^{-3})$

 $\Delta t \approx \gamma^{-1} \sim 10^{-6} s \rightarrow t_{simul} \approx \text{few } \tau_E \sim 10 s$

GK codes already use Petascale capabilities

- Various numerical schemes: [Grandgirard, Panorama & Synthèse 2012]
 Lagrangian (PIC), Eulerian or Semi-Lagrangian
- GK code development is a highly international competitive activity
 US: ~ 8 codes EU: 5 codes Japan: 2 codes
- EuroFusion project "GK code benchmark" (2015-2017)
 Linear benchmarks between 3 EU codes successfully achieved

[Goerler, PoP 2016; Biancalani, PoP 2017]

COMPACTION CONTRACTOR STATE-OF-THE-ART HPC (2/2)

- Various simplifications in terms of physics:
- δf : scale separation between equilibrium and perturbation
- Flux-tube: domain considered = a vicinity of a magnetic field line \neq
- Fixed gradient: no sources
- Collisionless: no neoclassical transport
- Adiabatic electrons: no particle transport
- Electrostatic: **B** = const
 - \rightarrow None of the codes cover all physical aspects

- ≠ Full-f
 - Global
- ≠ Flux-driven
- ≠ Collisions
- ≠ Kinetic electrons
- *≠* Electromagnetic

New generation of codes: Global full-f flux-driven code with collisions

\rightarrow ITER simulations without any assumptions are unreacheable

DE LA RECHERCHE À L'INDUST

- 1. Gyrokinetic codes for plasma turbulence
- 2. GYSELA code: How to treat kinetic electrons ?
 - Increase code Parallelization
 - → Prepare GYSELA to Exascale machine
 - Separation of dynamics (//, \perp)
 - → Weak discretization in // direction
 - Heavy electrons
 - \rightarrow spatial / temporal discretization x (m_i/m_e)²

3. GYSELA-X future code: Exascale core-edge simulations in X-point magnetic configuration

Numerical challenges

Cea GYSELA = GYrokinetic SEmi LAgrangian code

- GYSELA developed at CEA-IRFM since 2001: Unique code based on a Semi-Lagrangian method (mix between PIC and Eulerian schemes)
 [Grandgirard, CPC 2016]
 - GYSELA strength:
 - Global: simulate entire tokamak
 - \rightarrow boundary conditions (SOL-like, limiter)
 - Full-f: multi-scale physics
 - Flux-Driven (heat, momentum, ... sources)
 - \rightarrow steady state on τ_{E}
 - Multi-ion species \rightarrow impurity transp.
 - **Collision** operator \rightarrow synergy between neoclassical & turbulent transports
 - Full-kinetic or trapped kinetic electrons
- Present GYSELA limitations:
 - Circular magnetic configuration
 - Electrostatic

GK code – schematic view

Gyrokinetic complexity: Poisson is solved with the charge density of particles and the Vlasov equation describe the guiding-center evolution Gyrokinetic operator is more complex for global codes

Small scales & gyro-average operator

Cea 5D Boltzmann eq. + 3D quasi-neutrality eq.

Time evolution of the gyrocenter distribution function for *s* species $\overline{F}_s(r, \theta, \varphi, v_{\parallel}, \mu)$ governed by 5D gyrokinetic Fokker-Planck equation with an additional realistic heating source:

$$B_{\parallel s}^{*} \frac{\partial \bar{F}_{s}}{\partial t} + \nabla \cdot \left(\frac{\partial \mathbf{x}_{G}}{\partial t} B_{\parallel s}^{*} \bar{F}_{s}\right) + \frac{\partial}{\partial v_{G\parallel}} \left(\frac{\partial v_{G\parallel}}{\partial t} B_{\parallel s}^{*} \bar{F}_{s}\right) = \underbrace{C(\bar{F}_{s})}_{\text{collision operator}} + \underbrace{S}_{\text{heating source}}$$
where $\frac{d \mathbf{x}_{G}}{dt} = \mathbf{v}_{G} = v_{G\parallel} \mathbf{b} + v_{G\perp}$
with $v_{G\perp} \approx \frac{\mathbf{E} \times \mathbf{B}}{B^{2}} + v_{d0} R \frac{\mathbf{B} \times \nabla B}{B^{2}}$
Build the vector of the second s

 $\mathbf{E} = \nabla (\mathbf{J}_0 \cdot \phi)$ with $\phi(\mathbf{x})$ electrostatic potential and \mathbf{J}_0 the gyroaverage operator.

5D Boltzmann eq. + 3D quasi-neutrality eq.

Time evolution of the gyrocenter distribution function for *s* species $\overline{F}_s(r, \theta, \varphi, v_{\parallel}, \mu)$ governed by 5D gyrokinetic Fokker-Planck equation with an additional realistic heating source:

$$B_{\parallel s}^{*} \frac{\partial \bar{F}_{s}}{\partial t} + \nabla \cdot \left(\frac{\partial \mathbf{x}_{G}}{\partial t} B_{\parallel s}^{*} \bar{F}_{s}\right) + \frac{\partial}{\partial v_{G\parallel}} \left(\frac{\partial v_{G\parallel}}{\partial t} B_{\parallel s}^{*} \bar{F}_{s}\right) = \underbrace{C(\bar{F}_{s})}_{\text{teating source}} + \underbrace{S}_{\text{heating source}}$$
where $\frac{\partial \mathbf{x}_{G}}{\partial t} = \mathbf{v}_{G} = v_{G\parallel} \mathbf{b} + v_{G\perp}$
with $v_{G\perp} \approx \frac{\mathbf{E} \times \mathbf{B}}{B^{2}} + v_{d0} R \frac{\mathbf{B} \times \nabla B}{B^{2}}$
Build the vector of the teacher of the teacher of the teacher of the teacher of teacher of

- $\mathbf{E} = \nabla (\mathbf{J}_0 \cdot \phi)$ with $\phi(\mathbf{x})$ electrostatic potential and \mathbf{J}_0 the gyroaverage operator.
- Self-consistency ensured by a 3D quasi-neutrality equation:

$$\underbrace{\frac{e}{T_{e,eq}}(\phi - \langle \phi \rangle_{FS})}_{\delta n_e \text{ for adiabatic electrons}} = \underbrace{\frac{1}{n_{e_0}} \sum_{s} Z_s \int J_0 \cdot \left(\bar{F}_s - \bar{F}_{s,eq}\right) d^3 v}_{\sum_s \delta n_{GCs}} + \underbrace{\frac{1}{n_{e_0}} \sum_{s} Z_s \nabla_\perp \cdot \left(\frac{n_{s,eq}}{B\Omega_s} \nabla_\perp \phi\right)}_{\delta n_{polarization} \text{ particles } \neq \text{ guiding-centers}_{Page 15}}$$

C22 Time-splitting for Boltzmann equation

A time-splitting of Strang is applied to the 5D non-linear Boltzmann equation:

$$B_{\parallel s}^* \frac{\partial \bar{F}_s}{\partial t} + \nabla \cdot \left(\frac{d\mathbf{x}_{\mathbf{G}}}{dt} B_{\parallel s}^* \bar{F}_s \right) + \frac{\partial}{\partial v_{G\parallel}} \left(\frac{dv_{G\parallel}}{dt} B_{\parallel s}^* \bar{F}_s \right) = C(\bar{F}_s) + S$$

Let us define three advection operators
$$B_{\parallel s}^{*} \frac{\partial \bar{F}_{s}}{\partial t} + \nabla \cdot \left(B_{\parallel s}^{*} \frac{dX_{G}}{dt} \bar{F}_{s}\right) = 0 \qquad : (\tilde{X}_{G})$$

$$B_{\parallel s}^{*} \frac{\partial \bar{F}_{s}}{\partial t} + \frac{\partial}{\partial \varphi} \left(B_{\parallel s}^{*} \frac{d\varphi}{dt} \bar{F}_{s}\right) = 0 \qquad : (\tilde{\varphi})$$

$$B_{\parallel s}^{*} \frac{\partial \bar{F}_{s}}{\partial t} + \frac{\partial}{\partial v_{G\parallel}} \left(B_{\parallel s}^{*} \frac{dv_{G\parallel}}{dt} \bar{F}_{s}\right) = 0 \qquad : (\tilde{\varphi})$$
And the collision operator (\tilde{C}) on a Δt : $\partial_{t} \bar{F}_{s} = C(\bar{F}_{s})$
And the source operator (\tilde{S}) on a Δt : $\partial_{t} \bar{F}_{s} = S$
Crank-Nicolson
Then, a Boltzmann solving sequence (\tilde{B}) is performed:
(\tilde{B}) \equiv
 $\left(\frac{\tilde{S}}{2}, \frac{\tilde{C}}{2}\right) \left(\frac{v_{G\parallel}}{2}, \frac{\tilde{\varphi}}{2}, \tilde{X}_{G}, \frac{\tilde{\varphi}}{2}, \frac{v_{G\parallel}}{2}\right) \left(\frac{\tilde{C}}{2}, \frac{\tilde{S}}{2}\right)$

Example of Backward Semi-Lagrangian (BSL) approach for 2D advection operator

We consider the advection equation: $B_{\parallel s}^* \frac{\partial \bar{F}_s}{\partial t} + \nabla \cdot \left(B_{\parallel s}^* \frac{\partial X_G}{\partial t} \bar{F}_s \right) = 0$ (with $X_G = (r, \theta)$)

The Backward Semi-Lagrangian scheme: (mix between PIC and Eulerian approach)

- Fixed grid on phase-space (Eulerian character)
- Method of characteristics : ODE → origin of characteristics (PIC character)

f is conserved along the characteristics, i.e $f^{n+1}(\mathbf{x}_i) = f^n(X(t_n; \mathbf{x}_i, t_{n+1}))$

- Interpolate on the origin using known values of previous step at mesh points (initial distribution f⁰ known).
 - Cubic spline interpolation: good compromise between accuracy and complexity.

Marseille - November 29th, 2018

CEA | V. Grandgirard

22 Several Semi-Lagrangian schemes tested

$$(\tilde{\mathcal{V}}) \equiv \left(rac{ec{v_{G\parallel}}}{2}, rac{ ilde{arphi}}{2}, ilde{\mathcal{X}}_{G}, rac{ ilde{arphi}}{2}, rac{ec{v_{G\parallel}}}{2}
ight)$$

- Each Vlasov sequence $\tilde{\mathcal{V}}$ is solved by using Semi-Lagrangian techniques
- Several new Semi-Lagrangian have been tested in collaboration with Strasbourg university.
 - Conservative Semi-Lagrangian (CSL)
 - Forward Semi-Lagrangian (FSL)
- GYSELA is still based on the classical semi-lagrangian scheme
 - ▶ Backward Semi-lagrangian (BSL) [Grandgirard, JoCP 2006]
 → Good properties of energy conservation shown for 4D simplified models
- SELALIB INRIA platform for testing numerical schemes for 4D Vlasov equations: born out the observation that efficient schemes in 2D can be irrelevant for our 5D plasma turbulence problem.

CEA | V. Grandgirard

[Braeunig, INRIA-report 2010]

[Latu, INRIA-report 2012]

- Long simulation (\rightarrow self-organisation on τ_E) with adiabatic electrons on huge meshes (e.g. 272 10⁹) run ~ 1 month on several thousands cores [Dif-Pradalier, PRL 2015]
- GYSELA is already using currently Petascale machines (~ 100 million hours/year)
 - GYSELA runs efficiently on the totality of the biggest EU machine (~ 450 kcores)
 - Numerical issues for kinetic electrons:

 $v_{the} \sim (m_i/m_e)^{1/2} \times v_{thi} \sim 10^8 \text{m.s}^{-1} \rightarrow \text{time step / } (m_i/m_e)^{1/2} \sim 60$ $\rho_e \sim \rho_i / (m_i/m_e)^{1/2} \sim \rho_i / 60 \sim 50 \mu \text{m} \rightarrow \text{nb grid points} \times (m_i/m_e)^{3/2} \sim 60^3$

→ (ρ_{e} , v_{the}) and (ρ_{i} , v_{thi}) in same simulation more than exascale ?

CEA | V. Grandgirard

Parallelisation optimisation → Lagrange instead of cubic splines

- <u>Trend:</u> computations cheaper and cheaper in comparison to mem. access \rightarrow FLOPs achieved by high-order methods tends to increase
- Idea: Replace cubic splines used for interpolation in semi-Lagrangian scheme by high-order Lagrange polynomials
 - Lagrange are more local than cubic splines
 - Lagrange polynomials degree 5 \rightarrow best compromise (accuracy)

But Lagrange involves extra operations

Kind of interpolation	Mem. load	Mem. store	Multiply	Add	Divide
1D spline	1	1	26	16	1
1D Lagrange 6-pts	1	1	30	25	0
2D spline	1	1	60	40	2
2D Lagrange 6-pts	1	1	90	74	0

However: Compiler vectorises well Lagrange formula
 Division is costly on KNL

CEA | V. Grandgirard

Trapped kinetic electrons → Hybrid model

- Associated physics is relevant for ITER
 - Allow for particle turbulent transport
 - Account for trapped electron driven turbulence (expected at the edge)
- □ Small electron inertia → Numerical issue $v_{Te}/v_{Ti} \sim (m_i/m_e)^{1/2} \sim 60$ <u>Solutions:</u>
 - Consider artificially large electron mass
 → OK for trapped particles
 - Field aligned approach to cope with transport anisotropy
- Linear benchmarks OK (TEM & GAMs)
 Still issues in nonlinear regime

Taking benefit of the strong anisotropy

Objective: take benefit of strong anisotropy (// vs. \perp) to reduce nb. of grid points in 1 direction

Drawbacks of using aligned coordinates:

θ

GYSELA uses (r, θ, ϕ) coord. system

 \rightarrow would require complete rewritting

Not periodic \rightarrow loss of natural double periodicity of torus

Structures aligned along field lines

"Field aligned coordinates" method

- Standard method \rightarrow Nb of grid points ~ ρ_*^{-3}
- New "aligned-coordinates" method = take advantage of weak $\nabla_{//}$
 - Decouples // & \perp dynamics \rightarrow Nb of grid points ~ $\rho_*^{-2} \rightarrow$ crucial for kinetic e⁻

Gain of a factor 4 in time and memory including calcul. + comm. overhead

- 1. Gyrokinetic codes for plasma turbulence
- 2. GYSELA code: How to treat kinetic electrons ?
 - Increase code Parallelization
 - → Prepare GYSELA to Exascale machine
 - Separation of dynamics (//, \perp)
 - → Weak discretization in // direction
 - Heavy electrons
 - \rightarrow spatial / temporal discretization x (m_i/m_e)²

3. GYSELA-X future code: Exascale core-edge simulations in X-point magnetic configuration

Numerical challenges

Pushing gyrokinetic modelling towards the edge region

- Core transport studies in tokamak plasmas have now reached maturity
- However, despite their numerous successes to date, their predictive capabilities are still constrained with respect to the energy content in particular in optimized discharges.
- Challenging this gap requires pushing gyrokinetic modelling towards the edge region of the container vessel
 - \rightarrow If possible, addressing edge and core transport on an equal footing

Long-term aim for GYSELA:

- \rightarrow Exascale core-edge simulations in X-point magnetic configuration
- To many parts need to be changed in the current GYSELA code
- → Development of a new code: GYSELA-X

Marseille - November 29th, 2018

CEA | V. Grandgirard

- Simplified original unconfined (SOL) region
 - Limiter \rightarrow immersed boundary (penalization technique)
 - Prescribed divertor-plasma interaction in // direction

Already more physically relevant boundary conditions in GYSELA

□ Arbitrary & consistent (G-S) magnetic equilibrium

- Generalized metric
- **Choice of** \perp coordinates:
 - → flux-aligned (ψ , θ) vs. (R,Z) for Vlasov?
- X-point singularity ($B_{\theta}=0$) \rightarrow avoided in (R,Z)
- Diagnostics
- \rightarrow Flux-surface average not straightforward in (R,Z) coordinates

□ From the plasma core to the Scrape-Off Layer

- "No man's land" issue: core turbulence spreading into the edge or SOL turbulence invading the edge?
- Core turbulence & confinement much sensitive to boundary Cons
- Transition from Low- to High-confinement regime: power threshold?
 control scheme?

Pecularities of the edge:

• Large fluctuations: $\delta n/n=O(1)$ \Rightarrow full-F + non linear polariza-

tion term ?

 Steep gradients ⇒ equilibrium & fluctuation scales merge (no scale separation)

□ From the plasma core to the Scrape-Off Layer

• Cope with large variation of temperature \rightarrow 5D patches?

- Temperature varies by orders of magnitude from core to edge

- Turbulence scales like $\rho_i{\sim}T_i^{1/2}$

Typical T profile in H-mode 10 10 10 Core 0.01 10^{1} 10^{2} 10^{3} 10^{4} Normalized radius r/p₁

Cf. e.g. [Jarema CPC (2017)]

Stable numerical schemes able to treat steep gradients ?

nodes \rightarrow block-structured mesh

Multigrid 2D poisson solver

mputational mesh Marseille - November 29th, 2018

 Last closed magnetic surface

CEA | V. Grandgirard

22 How to treat boundary conditions ?

□ Boundary conditions at the outer edge

- // plasma-wall interaction ⇒ Bohm condition at sheath entrance constraints potential (eφ/T_e~3), density decay & Mach number (|M_{||}| ≥ 1)
- Fast ion orbit losses (banana orbits hitting the wall
 → also relevant for stellerators) ⇒ edge polarization
 - // : ensuring Bohm criterion with immersed boundaries
 - \rightarrow with & without kinetic electron physics
 - $\blacksquare \perp$: accounting for ion orbit losses with semi-Lagrangian scheme

□ Kinetic electrons & Electromagnetic effects

- Optimal filtering in velocity space: loss cone $v_{//}=(2\epsilon)^{1/2}v_{\perp}$ or $v_{//}=Cst$?
- Passing electrons mandatory for electromagnetic effects \rightarrow important at the edge where $\beta (L_s/L_T)^2$ is large O(1)
- All electrons are kinetic in the SOL
- Different time steps for electrons & ions ?

(Δt governed by core electrons)

■ Ampère equation on A// \rightarrow Magnetic cancellation issue (\exists solutions)

$$\begin{aligned} \nabla_{\perp}^{2} A_{\parallel} + & \underbrace{\omega_{p}^{2}}_{c^{2}} A_{\parallel} = -\mu_{0} J_{\parallel} \\ \text{small} \quad \text{huge} \quad \sim \text{counterpart} \end{aligned}$$

Cf. e.g. [E. Sonnendrücker (2018)]

Conclusion & Perspectives

- Kinetic electrons recently implemented in the gyrokinetic global full-f fluxdriven code GYSELA.
 - Hybrid model \rightarrow Kinetic trapped electrons for non linear simulations
 - Goal: Particle and energy transport (role of TEM) studies
- Gyrokinetic global codes will require exascale capabilities for ITER simulations with kinetic electrons
- EoCoE-II project: Development of a new code GYSELA-X
 - Coupling between core and edge turbulence
 - Big challenges for semi-Lagrangian scheme for Vlasov equation
 - Multigrid 2D Poisson solver
 - Choice of numerical schemes strongly linked to exascale objective

DE LA RECHERCHE À L'INDUSTRI

Back-up slides

Linearized collision operator without FLR effects

$$C_{ab}(F_{a},F_{b}) = \frac{C_{ab}^{0}(F_{M0a},F_{M0b})}{C_{ab}^{0}(F_{M0a},F_{M0b})} + \frac{C_{ab}^{1}(F_{a},F_{b})}{T_{b}} \qquad F_{M0a} = N_{a} \left(\frac{1}{2\pi v_{Ta}^{2}}\right)^{3/2} \exp\left(-\frac{v^{2}}{2v_{Ta}^{2}}\right)$$

$$C_{ab}^{0}(F_{M0a},F_{M0b}) = \frac{T_{b} - T_{a}}{T_{b}} \frac{m_{a}v^{2}}{2T_{a}} \nu_{E,ab}F_{M0a} \qquad \text{[D.Esteve, POP(2015)]}$$

$$C_{ab}^{1}(F_{a},F_{b}) = C_{v,ab}(F_{a}) + C_{d,ab}(F_{a}) + C_{\parallel,ab}(F_{a},F_{b}) \qquad g_{a} = f_{a} - \frac{m_{a}v_{\parallel}U_{\parallel}d_{,a}}{T_{a}}$$

$$C_{\parallel,ab}(F_{a},F_{b}) = -\nu_{s,ab}(v)\frac{m_{a}}{T_{a}}v_{\parallel}\left(U_{\parallel d,a} - U_{\parallel ba}\right)F_{M0a} \qquad g_{a} = f_{a} - \frac{m_{a}v_{\parallel}U_{\parallel}d_{,a}}{T_{a}}$$

$$C_{v,ab}(F_{a}) = \frac{1}{2B_{\parallel}^{*}v_{\perp}}\frac{\partial}{\partial v_{\perp}}\left[B_{\parallel}^{*}F_{M0a}\nu_{v,ab}v_{\perp}^{2}\left(v_{\perp}\frac{\partial g_{a}}{\partial v_{\perp}} + v_{\parallel}\frac{\partial g_{a}}{\partial v_{\parallel}}\right)\right] + \frac{1}{2B_{\parallel}^{*}}\frac{\partial}{\partial v_{\parallel}}\left[B_{\parallel}^{*}F_{M0a}\nu_{d,ab}v_{\perp}v_{\parallel}\left(v_{\parallel}\frac{\partial g_{a}}{\partial v_{\perp}} - v_{\perp}\frac{\partial g_{a}}{\partial v_{\parallel}}\right)\right] + \frac{1}{2B_{\parallel}^{*}}\frac{\partial}{\partial v_{\parallel}}\left[B_{\parallel}^{*}F_{M0a}\nu_{d,ab}v_{\perp}\left(-v_{\parallel}\frac{\partial g_{a}}{\partial v_{\perp}} + v_{\perp}\frac{\partial g_{a}}{\partial v_{\parallel}}\right)\right] + \frac{1}{2B_{\parallel}^{*}}\frac{\partial}{\partial v_{\parallel}}\left[B_{\parallel}^{*}F_{M0a}\nu_{d,ab}v_{\perp}v_{\parallel}\left(-v_{\parallel}\frac{\partial g_{a}}{\partial v_{\perp}} + v_{\perp}\frac{\partial g_{a}}{\partial v_{\parallel}}\right)\right] + \frac{1}{2B_{\parallel}^{*}}\frac{\partial}{\partial v_{\parallel}}\left[B_{\parallel}^{*}F_{M0a}\nu_{d,ab}v_{\perp}v_{\parallel}\left(-v_{\parallel}\frac{\partial g_{a}}{\partial v_{\perp}} + v_{\perp}\frac{\partial g_{a}}{\partial v_{\parallel}}\right)\right] + \frac{1}{2B_{\parallel}^{*}}\frac{\partial}{\partial v_{\parallel}}\left[B_{\parallel}^{*}F_{M0a}\nu_{d,ab}v_{\perp}v_{\parallel}\left(-v_{\parallel}\frac{\partial g_{a}}{\partial v_{\perp}} + v_{\perp}\frac{\partial g_{a}}{\partial v_{\parallel}}\right)\right] + \frac{1}{2B_{\parallel}^{*}}\frac{\partial}{\partial v_{\parallel}}\left[B_{\parallel}^{*}F_{M0a}\nu_{d,ab}v_{\perp}v_{\parallel}\left(-v_{\parallel}\frac{\partial g_{a}}{\partial v_{\perp}} + v_{\perp}\frac{\partial g_{a}}{\partial v_{\parallel}}\right)\right] + \frac{1}{2B_{\parallel}^{*}}\frac{\partial}{\partial v_{\parallel}}\left[B_{\parallel}^{*}F_{M0a}\nu_{d,ab}v_{\perp}\left(-v_{\parallel}\frac{\partial g_{a}}{\partial v_{\perp}} + v_{\perp}\frac{\partial g_{a}}{\partial v_{\parallel}}\right)\right] + \frac{1}{2B_{\parallel}^{*}}\frac{\partial}{\partial v_{\parallel}}\left[B_{\parallel}^{*}F_{M0a}\nu_{d,ab}v_{\perp}\left(-v_{\parallel}\frac{\partial g_{a}}{\partial v_{\perp}} + v_{\perp}\frac{\partial g_{a}}{\partial v_{\parallel}}\right)\right] + \frac{1}{2B_{\parallel}^{*}}\frac{\partial}{\partial v_{\parallel}}\left[B_{\parallel}^{*}F_{M0a}\nu_{d,ab}v_{\perp}\left(-v_{\parallel}\frac{\partial g_{a}}{\partial v_{\perp}} + v_{\perp}\frac{\partial g_{a}}{\partial v_{\parallel}}\right)\right] + \frac{1}{2B_{\parallel}^{*}}\frac{\partial}{\partial v_{\parallel}}\left[B_{\parallel}^{*}F_{M0a}\nu_{d,ab}v_{\perp}\left(-v_{\parallel}\frac{\partial g_{a}}{\partial v_{\perp}} + v_{\perp}\frac{\partial g_{a}}{\partial v_{\parallel}}\right)\right] + \frac{1}{2B_{\parallel}^{*}}\frac{\partial}{\partial v_{\parallel}}\left[B_{\parallel}^{*}F_{M0a}\nu_{d,ab}v_{\perp}\left(-v_{\parallel}\frac{$$

Close to Sugama operator [Sugama, POP(2009)]

Removing Inner Boundary Condition: r = 0

0.8

-0.8

Issue at r=0: divergence of metric (1/r) + too many θ points

Previously: $r_{min} > 0 \rightarrow |$ Dirichlet for ϕ_{mn} Neumann for ϕ_{00}

Upgrade:

Poisson (trick): $r_{min} = \Delta r/2 \Rightarrow$ no BC required in r

Vlasov: bilinear interpolation in 0<r<r_{min}

Marseille - November 29th, 2018

Kinetic electrons & spurious ω_H modes

- Electrostatic limit \rightarrow spurious " ω_{H} " modes: $\omega_{H} / \omega_{ci} = (k_{//} / k_{\perp}) (m_{i}/m_{e})^{1/2}$
 - Correspond to hydro-dynamical limit ($\omega >> k_{//} v_{th}$) of ITG disp. rel. [Lee 1987]
 - Also: electrostatic limit (β =0) of kinetic Alfvén wave

$$\omega_{KAW}^2 = k_{\parallel}^2 v_A^2 \ \frac{1 + k_{\perp}^2 \rho_i^2}{1 + k_{\perp}^2 d_e^2} = \frac{k_{\parallel}^2 \rho_i^2 \ \omega_{ci}^2}{k_{\perp}^2 \rho_i^2 (m_e/m_i) + \beta/2} \ (1 + k_{\perp}^2 \rho_i^2)$$
[Scott 1997]

 \Rightarrow Should disappear in electromagnetics (for $\beta > (k_{\perp}\rho_i)^2 m_e/m_i \sim 2.10^{-5})$

Trick: disappear when filtering out $(m \neq 0, n=0)$ modes in QN eq. [Idomura 2016]

Strong scaling – Relative efficiency Broadwell / KNL / Skylake

From 16 up to 128 nodes. Domain size 512 × 256 × 128 × 128 × 16 - Medium case

- Good efficiencies
- Pb to scale:
 - Field solver
 - Derivatives comp.

G. Latu & al.

Towards Scrape-Off Layer physics r>a

Coupling core (r/a<1) – SOL (r/a>1) is important: H-mode, impurities & neutrals

Critical challenges:

close/open magnetic surfaces (periodicity; plasmasurface interaction) relative fluctuation levels

particle sources/sinks

Possible alternatives: penalization and/or transition towards fluid description?

Parallelisation optimisation Improvement of the vectorisation

GYSELA is now ported on KNL machine

[EoCoE european Project + CVT GENCI + HLST IPP Garching + Atos-France]

Benchmark on one node Broadwell / KNL / Skylake (Marconi machine)

	Steps \ Hardware	Broadwell	KNL	Skylake
Adding of vectorisation + Lagrange	advec1D in vpar	12.7 (-78%)	12.2 (-85%)	6.4 (-86%)
	advec2D (r,theta)	16.3 (-60%)	24.7 (-43%)	8.9 (-70%)
	comm. transpose	31.2 (-25%)	12.9 (-48%)	15.5 (-53%)
	heat source	5.6 (-50%)	7.9 (-64%)	3.2 (-60%)
	Total	139 (-45%)	124 (-55%)	86 (-58%)

Table: Breakdown of timing (in s) for a small run. In parentheses,improvement compared to initial version.[G. Latu, 2017]

CPU time on one KNL node comparable with one Broadwell node
 Improvement of vectorisation essential for KNL

 \rightarrow positive impact on Broadwell and Skylake machine