SORBONNE UNIVERSITÉ

From particle methods to hybrid semi- Lagrangian schemes

Martin Campos-Pinto ${ }^{1}$, Frédérique Charles ${ }^{1}$

${ }^{1}$ Laboratoire Jacques-Louis Lions
Sorbonne universite, CNRS UMR 7598

Marseille, November 29th, 2018

Introduction

Particle methods

Widely used for transport equations, especially for kinetic equations

- Quite easy to implement, even for high dimensions
- Lower computational cost than Eulerian methods (DG, Backward or Forward semi-Lagrangien schemes...)
- Main drawback : noisy solutions

Outline
(1) Particle methods
(2) LTP method
(3) FBL method

Particle methods

Transport equation (conservative form)

$$
\begin{equation*}
\partial_{t} \rho+\nabla \cdot(a \rho)=0, \quad \rho(0, \cdot)=\rho^{0} \tag{1}
\end{equation*}
$$

with $a: \mathbb{R}^{+} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ smooth $\left(a_{i} \in \mathrm{~L}^{\infty}\left(0, T ; W^{1, \infty}\right)\right)$.

Principle of particle methods

If $\rho^{0}(x)=\delta\left(x-x_{0}\right)$, then the measure solution of (1) is given by

$$
\rho(t, x)=\delta\left(x-X_{0, x_{0}}(t)\right)
$$

where $X_{s, x_{0}}(t)=F^{s, t}\left(x_{0}\right)$ is the charateristic line starting from x_{0} :

$$
\begin{cases}\frac{d}{d t} X_{s, x_{0}}(t) & =a\left(t, X_{s, x_{0}}(t)\right) \\ X_{s, x_{0}}(s) & =x_{0}\end{cases}
$$

Particle methods

Consequence: discretization of (1)

- We choose $\left(\omega_{k}^{0}, x_{k}^{0}\right)_{1 \leq k \leq N}$ such that $\rho^{0}(x) \sim \rho_{h}^{0}=\sum_{k=1}^{N} \omega_{k}^{0} \delta\left(x-x_{k}^{0}\right)$

For example (deterministic initialization)

$$
x_{k}^{0}=h \mathbf{k} \quad\left(\mathbf{k} \in \mathbb{Z}^{d}\right), \quad \omega_{k}^{0}=\rho^{0}\left(x_{k}^{0}\right)
$$

- Then the solution $\rho(t, x)$ is approximated by

$$
\rho_{h}(t, x)=\sum_{k=1}^{N} \omega_{k}^{0} \delta\left(x-X_{k}(t)\right) \quad \text { with } \quad\left\{\begin{array}{l}
X_{k}^{\prime}(t)=a\left(t, X_{k}(t)\right) \\
x_{k}(0)=x_{k}^{0}
\end{array}\right.
$$

Remark

For equation $\partial_{t} \rho+\nabla \cdot(a \rho)+a_{0} \rho=0$ the weights evolve according to

$$
\omega_{k}^{\prime}(t)+a_{0}\left(t, X_{k}(t)\right) \omega_{k}(t)=0, \quad \omega(0)=\omega_{k}^{0}
$$

Regularization

Convolution kernel

Let $\varepsilon>0$ and φ_{ϵ} such that $\int_{\mathbb{R}^{d}} \varphi_{\varepsilon}(x) d x=1, \quad \varphi_{\varepsilon} \rightharpoonup_{\varepsilon \rightarrow 0} \delta, \quad \varphi_{\varepsilon}$ even.
Typically, we take $\varphi_{\varepsilon}(y)=\frac{1}{\varepsilon^{d}} \varphi\left(\frac{y}{\varepsilon}\right)$, with

- φ a spline fonction (B1 or B3)
- or φ a troncated Gaussian

Smooth particle approximation of ρ

$$
\begin{gathered}
\rho_{h, \varepsilon}(t, x)=\sum_{k=1}^{N} \omega_{k} \varphi_{\varepsilon}\left(x-x_{k}(t)\right) \\
\left(\omega_{k} \simeq \int_{x_{k}^{0}-h / 2, x_{k}^{0}+h / 2} \rho^{0}(t) d t\right)
\end{gathered}
$$

Smooth Particles methods

Choice of ε ?

Convergence of smooth Particles methods

Error estimate for a given velocity a [Raviart]

If $\varphi \in \mathcal{W}^{m, 1}$ is such that $\int \varphi=1, \int|x|^{r}|\varphi(x)| d x<+\infty$ and for a certain $m>0, r>0$

$$
\int x_{1}^{k_{1}} \ldots x_{d}^{k_{d}} \varphi\left(x_{1}, \ldots, x_{d}\right) d x=0, \quad|k|=k_{1}+\cdots+k_{d} \leq r-1
$$

then the following error estimate hold :

$$
\left\|\rho_{h, \varepsilon}-\rho\right\|_{L^{\infty}(0, T) \times \mathbb{R}^{d}} \leq C_{T}\left(\varepsilon^{r}\left|\rho^{0}\right|_{W^{r, \infty}}+\left(\frac{h}{\varepsilon}\right)^{m}\left|\rho^{0}\right|_{W^{m, \infty}}\right)
$$

- With $h \sim \varepsilon$, weak convergence of the density only
- For a given ε, strong convergence requires $h \ll \varepsilon\left(h \sim \varepsilon^{1 / q}, q<1\right)$
\Rightarrow require a huge number of particles $N\left(N \sim \frac{1}{h^{d}}\right)$
\Rightarrow implies extended particle overlapping

Exemple of a "noisy" Smooth Particle simulation

Numerical resolution with a SP method of the 1D-aggregation equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\frac{\partial}{\partial x}(\rho u)=0 \tag{2}\\
u(t, x)=-W^{\prime} \star \rho \\
\rho(0, x)=\rho^{0}(x)
\end{array}\right.
$$

where $W(x)=\frac{|x|^{a}}{a}-\frac{|x|^{b}}{b},(a, b)=(4,2.5)$, with $N=100$ particles, $\varepsilon=h$.

$\rho_{h, \varepsilon}^{n}$ at steady state, with SP method

Denoising particle methods

Periodical remapping with $\varepsilon \sim h$

- re-initialize the particles on a phase-space grid.
- new particles $=$ regular nodes
$\rho_{h}^{\mathrm{n}}(x)=\sum_{k} \omega_{k} \varphi_{h}\left(x-X_{k}^{n}\right) \quad \longrightarrow \quad \rho_{h}^{\mathrm{n}, \text { remap }}(x)=A_{h}\left(\rho_{h}^{\mathrm{n}}\right)=\sum_{k} \omega_{k}^{\text {remap }} \varphi_{h}\left(x-x_{k}^{0}\right)$ with $\omega_{k}^{\text {remap }}=a_{k, h}\left(\rho_{h}^{\mathrm{n}}\right)$ depends of values of ρ_{h}^{n} on a local stencil around x_{k}^{0}.

\Rightarrow oscillations are smoothed out

... but numerical diffusion is introduced

Same idea: Remeshed Particle Method/ Forward Semi-Lagrangien schemes

- Crouseilles, Respaud, Sonnendrücker 2008
- Cottet, Etancelin, Perignon, Picard, 2014 ; Cottet 2018

LTP (LTPIC) method

- Original idea of Perthame and Cohen (2000) : tranform the shape φ_{ε} of particles in order to better follow the flow
- LTP (and QTP) method developped in the context of the Vlasov-Poisson system (divergence free flow) by M. Campos-Pinto (JSC 2014, JCP 2014).

Idea of LTP method

- The solution of equation (1) is given by $\rho(t)=F_{\mathrm{ex}}^{0, t} \# \rho^{0}$, i.e :

$$
\rho(t, x)=j^{t, 0}(x) \rho^{0}\left(F_{\mathrm{ex}}^{t, 0}(x)\right)
$$

with

$$
\rho^{0} \sim \rho_{h}^{0}=\sum_{k} \omega_{k} \varphi_{h, k}^{0}, \quad \varphi_{h, k}^{0}(x)=\frac{1}{h^{d}} \varphi\left(\frac{x-x_{k}^{0}}{h}\right)
$$

- Introduce a linearization of the forward flow around x_{k}^{0}

$$
F_{\mathrm{lin}, k}^{0, t}: x \rightarrow x_{k}(t)+\bar{J}_{k}^{t}\left(x-x_{k}^{0}\right), \quad \bar{J}_{k}^{t}=J^{0, t}\left(x_{k}^{0}\right)
$$

and transforme the shape of each particle according to the linearized flow

$$
\varphi_{h, k}^{t}=F_{\operatorname{lin}, k}^{0, t} \# \varphi_{h}^{0}
$$

Then

$$
\varphi_{h, k}^{t}(y)=\frac{1}{\operatorname{det}\left(\bar{J}_{k}^{t}\right)} \varphi_{h}(\underbrace{\left(\bar{J}_{k}^{t}\right)^{-1}}_{\text {deformation }}\left(y-x_{k}(t)\right))
$$

LTP representation of $\rho\left(t^{n}, \cdot\right)$

$$
\rho_{h}^{n}(x)=\sum_{k} \omega_{k} \varphi_{h, k}^{n}(x) \quad \text { with } \quad \varphi_{h, k}^{n}(x)=\frac{1}{h_{k}^{n}} \varphi\left(\frac{D_{k}^{n}}{h}\left(x-x_{k}^{n}\right)\right)
$$

- D_{k}^{n} : "Deformation matrix"; $D_{k}^{0}=I_{d \times d}$
- h_{k}^{n} : "volume of particles"; $h_{k}^{0}=h^{d}$

Computation of the approximated Jacobian matrix

- Compute $D_{k}^{n}=D_{k}^{n-1}\left(J_{k}^{n-1}\right)^{-1}$, where $J_{k}^{n-1} \simeq J^{t^{n-1}, t^{n}}\left(x_{k}^{n-1}\right)$,

$$
\text { using for example } \quad \frac{J^{s, t}}{d t}(x)=d u\left(t, F^{s, t}(x)\right) J^{s, t}(x)
$$

- or directe FD using current positions of particles approximation

$$
D_{k}^{n}=\left[\left(\frac{x_{k+e_{j}}^{n}-x_{k-e j}^{n}}{2 h}\right)_{1 \leq i, j \leq d}\right]^{-1},
$$

Passiv flow

Theorem [M. Campos-Pinto, 2014]

If $\rho^{0} \in W^{1, \infty}\left(\mathbb{R}^{d}\right), a \in L^{\infty}\left([0, T], W^{2, \infty}\right)$ and $\operatorname{div}(a)=0$, with $x_{k}^{n}=F_{\mathrm{ex}}^{0, t_{n}}\left(x_{k}^{0}\right)$ then

$$
\left\|\rho_{h}^{n}-\rho_{\mathrm{ex}}^{n}\right\|_{\infty} \leq C h \quad\left(C=C\left(T,\left\|\rho^{0}\right\|_{W^{1, \infty}},\right)\right)
$$

Example : reversible "swirling" velocity field (LeVeque)
$u_{S W, T}(t, x)=\cos \left(\frac{\pi t}{T}\right) \operatorname{curl}\left(\phi_{S W}(x)\right), \quad \phi_{S W}(x)=\frac{-1}{\pi} \sin ^{2}\left(\pi x_{1}\right) \sin ^{2}\left(\pi x_{2}\right)$

$$
N_{\text {part }}=4 \cdot 10^{4}, t=T / 2, \Delta_{\text {remap }}=10 \Delta t
$$

Passiv flow : idea of the proof

- Approximation operator : $A_{h}: \rho^{0} \mapsto \rho_{h}^{0}(x)=\sum_{k} \omega_{k} \varphi_{h, k}^{0}(x)$ such that

$$
\left\|A_{h} \rho^{0}-\rho^{0}\right\|_{L^{\infty}} \leq C h\left|\rho^{0}\right|_{W^{1, \infty}}
$$

- Let denote $S_{h, k}^{0}=\operatorname{Supp}\left(\varphi_{h, k}^{0}\right)$ and

$$
\Sigma_{h, k}^{n}=F_{\mathrm{ex}}^{0, t_{n}}\left(S_{h, k}^{0}\right) \cup F_{h, k}^{0, t_{n}}\left(S_{h, k}^{0}\right)
$$

- Overlapping $\left(\mathcal{K}_{n}(x)\right.$: set of overlapping particles at location $\left.x\right)$:

$$
\kappa_{n}:=\sup _{x \in \mathbb{R}^{d}} \# \mathcal{K}_{n}(x), \quad \mathcal{K}_{n}(x):=\left\{k \in \mathbb{Z}^{d}, x \in \Sigma_{h, k}^{n}\right\} .
$$

- Error on the Forward flow :

$$
\overline{e_{F}}{ }^{n}=\sup _{k}\left\|F_{\mathrm{ex}}^{0, t_{n}}-F_{h, k}^{0, t_{n}}\right\|_{L^{\infty}\left(S_{h, k}^{0}\right)}
$$

Vlasov-Poisson system

$$
\frac{\partial f}{\partial t}+v \cdot \partial_{x} f+E \cdot \partial_{v} f=0, \quad \partial_{x} E(t, x)=1-\int_{\mathbb{R}} f(t, x, v) d v
$$

$f(t, x, v)$: density function in electron, $t \in[0, T]$

Hypothesis

- E given by

$$
E(t, x)=\int_{0}^{L} K(x, y)\left(1-\int_{\mathbb{R}} f(t, y, v) d v\right) d y
$$

- bounded support in v-dimension, L-periodic with respect to x
- $f^{0} \in \mathcal{W}^{2, \infty}\left(\mathbb{R}^{2}\right)$
- global neutrality relation

$$
\int_{0}^{L}\left(\int_{\mathbb{R}} f^{0}(x, v) d v-1\right) d x=0 .
$$

Vlasov-Poisson system

Theorem [GH Cottet, PA Raviart, 1984]

Using SP method, one has

$$
\sup _{t \in[0, T]}\left\|E_{h}(t)-E(t)\right\|_{L^{\infty}}+\sup _{k}\left\|Z_{k}^{h}(t)-F_{\mathrm{ex}}^{0, t}\left(z_{k}^{0}\right)\right\| \leq C_{T} h
$$

Theorem [M. Campos-Pinto, F.C, 2014]
Using LTP method, one has

$$
\sup _{0 \leq n \leq T / \Delta t}\left\|E_{h}^{n}+1 / 2-E\left(t_{n+1 / 2}\right)\right\|_{L^{\infty}}+\sup _{k}\left\|z_{k}^{n}-F_{\mathrm{ex}}^{0, t_{n}}\left(z_{k}^{0}\right)\right\| \leq C_{T}\left(h^{2}+\Delta t^{2}\right)
$$

and provided $\Delta t \lesssim \sqrt{h}$, the particle approximation of the phase space density satisfies

$$
\left\|f_{h}^{n}-f_{\mathrm{ex}}^{n}\right\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} \lesssim h+\frac{\Delta t^{2}}{h}
$$

Loss of locality in LTP method

Evolution of the shapes of particles

\Rightarrow necessity of periodical remappings

FBL method

We consider here the equation

$$
\begin{equation*}
\partial_{t} \rho+a \cdot \nabla \rho=0, \quad \rho(0, \cdot)=\rho^{0} \tag{3}
\end{equation*}
$$

The exact solution is given by

$$
\begin{equation*}
\rho(t, x)=\rho^{0}\left(F^{t, 0}(x)\right) \tag{4}
\end{equation*}
$$

Idea

Use a approximation of the backward flow $F^{t, 0}(x)$ (for all x) directly in (4) !!

FBL method

- "Particles" are pushed forward like in Particles methods : $\left(x_{k}^{n}\right)_{k}$
- Reconstruct of the backward flow at time t_{n} on a grid $\left(\xi_{i}\right)_{i \in \mathbb{Z}^{d}}$:

$$
F^{t_{n}, 0}\left(\xi_{i}\right) \simeq B_{i}^{n}:=F_{h, k^{*}(n, i)}^{t_{n}, 0}
$$

where

$$
k^{*}(n, i):=\operatorname{argmin}_{k}\left\|x_{k}^{n}-\xi_{i}\right\|
$$

and

$$
F_{h, k^{*}(n, i)}^{t_{n}, 0}: x \mapsto x_{k}^{0}+D_{k}^{n}\left(x-x_{k}^{n}\right), \quad D_{k}^{n} \simeq\left(J_{F_{e x}^{0, t_{n}}}\left(x_{k}^{0}\right)\right)^{-1}
$$

- (optional) Reconstruct a backward flow for all x with a partition of unity $\sum_{i} S_{h}\left(x-\xi_{i}\right)=1$, and

$$
B_{h}^{n}(x)=\sum_{i} B_{i}^{n}(x) S_{h}\left(x-\xi_{i}\right)
$$

- Define a FBL approximation of ρ^{n} by

$$
\rho_{h}^{n}(x)=\rho^{0}\left(B_{h}^{n}(x)\right)
$$

FBL method for a passiv flow

Theorem [M. Campos-Pinto, F.C, 2016]

The FBL approximation of order 1 (LFBL) satisfy

$$
\left\|\rho_{h}^{n}-\rho_{\mathrm{ex}}^{n}\right\|_{\infty} \leq C h^{2}
$$

Key argument

LTP estimate is based on the bound

$$
\left|\omega_{k}\right|\left|\varphi_{h}\left(F_{h, k}^{t_{n}, 0}(x)\right)-\varphi_{h}\left(F_{\mathrm{ex}}^{t_{n}, 0}(x)\right)\left\|\leq\left|\omega_{k}\right|\left|\varphi_{h}\right|_{\mathrm{lip}}\right\| F_{h, k}^{t_{n}, 0}-F_{\mathrm{ex}}^{t_{n}, 0} \|_{L^{\infty}\left(S_{h, k}^{n}\right)} \lesssim \frac{1}{h} \overline{e_{F}}{ }^{n}\right.
$$

whereas for FBL we have

$$
\left\|\rho_{0}\left(B_{h}^{n}(x)\right)-\rho_{0}\left(F_{\mathrm{ex}}^{t_{n}, 0}(x)\right)\right\| \lesssim\left\|\rho^{0}\right\|_{\mathrm{lip}}{\overline{e_{F}}}^{n}
$$

FBL method

Example : reversible "swirling" velocity field $u_{S W, T}$
$N_{\text {part }}=4 \cdot 10^{4}, T=5, \Delta t=0.05, \Delta t_{\text {remap }}=1.5$

FBL method

$$
N_{\text {part }}=10^{6}, T=12, \Delta t=0.12, \Delta t_{\text {remap }}=2
$$

particles on time step $n t=50(t=6.0)$

particles on time step $n t=100(t=12.0)$

ton time step nt $=50(\mathrm{t}=6.0)$
'dat_files/viz_run=100_1000×1000_f_50.dat' u 1:2:3

fon time step $n t=100(\mathrm{t}=12.0)$
'dat_files/viz_run=100_1000×1000_f_100.dat' u 1:2:3

FBL method

Error estimates for the reversible "swirling" velocity field $u_{S W, T}$

FBL for Vlasov-Poisson system

Two stream instability $f_{0}(x, v)=(1+\epsilon \cos (k x)) v^{2} \frac{1}{\sqrt{2 \pi}} e^{-v^{2} / 2}, \epsilon=0.5, T=45$.

LTP, $\mathrm{Dt}_{\mathrm{r}}=1$

F. Charles

LTP, $\mathrm{Dt}_{\mathrm{r}}=2$

LTP, $\mathrm{Dt}_{\mathrm{r}}=8$

Conclusion

- LTP methods improve accuracy ... but still need remappings
- QTP even better ... but very costly
- FBL methods: enhanced locality, less remappings are needed

Next prospects

- Multiscale method
- Extension to diffusion equation and Vlasov Fokker-Planck
- linear Fokker Planck-Planck-Landau operator

$$
P F(f)(v)=\nabla_{v} \cdot\left(\nabla_{v} f(v)+v f(v)\right)
$$

- non linear kernel $L_{\phi}(f)(v)=\nabla_{v} \cdot\left(\left(a_{\phi} \star f\right) \nabla_{v} f(v)-\left(b_{\phi} \star f\right) f(v)\right)$

References

- M. Campos-Pinto, Towards smooth particles methods without smoothing, JSC 2014.
- M. Campos- Pinto, E. Sonnendrücker, A. Friedman, S. Lund, D. Grote, Noiseless Vlasov-Poisson simulations with linearly transformed particles, JCP 2014.
- M. Campos- Pinto, FC, Uniform convergence of a linearly transformed particle method for the Vlasov-Poisson system, SINUM 2016.
- M. Campos- Pinto, J. Carrillo, FC, Y.-P. Choi Convergence of a linearly transformed particle method for aggregation equations, Num. Math., 2018.
- M. Campos- Pinto, FC, From particle methods to hybrid semi-Lagrangian schemes. SMAI-JCM, 2018.

Thank you for your attention!

