
 1

Semi-Lagrangian particles
or

6D Vlasov on single core

G.-H. Cottet

Univ. Grenoble-Alpes

!2

A brief and biased history of particle methods for
Vlasov-Poisson and flow simulations

Numerics Vlasov Incompressible
flows

Compressible
flows

80’s Numerical analysis

(PIC, VIC, ..) Design of SPH

Numerical issues
Noise / accuracy

Random init

npart >> Ncell

Location processing
technique

Renormalization

h << ε

Field solve Grid/FFT Grid-free/Biot-Savart

Fast N-body solvers no field

90’s Accuracy Particle remeshing

2000 Field solve FFT based

2005- Accuracy

-High order remeshing

-Directional splitting

-S.L particles

-Multi-resolution
particles

-GPU implementation

Vlasov-Maxwell equations

Distribution function for one specie of ions (or electrons) subject to electric and
magnetic fields satisfy

Conservation of charge:

+ Maxwell equations coupling E and B to moments of f (density and charge):

⇢(x, t) = q

Z
f(x,v, t) dv

i(x, t) = q

Z
v f(x,v, t) dv

2

satisfies

conservative advection equation for f with velocity field U

-> conservation of all Lp norms of f

Transport equation in phase space (x,v) of dimension up to 6

Advection field given by

!5

Computational complexity lies in

• space dimension (up to 6)

• transport equation where one wishes to conserve physical invariants and f∊[0,1]

These features make natural the use of Lagrangian particle methods :

• replace f by macro-particles in the phase space

• follow them with local velocities

• compute E, B fields in self-consistent way with integral formulas or FFT-based

grid solvers

 however support of f occupies in general small part of phase space

!6

Pros:

• calculations restricted to the support of f

• norms of distribution function f, bounds of f and entropy ok

• large time-steps (see later)

Cons :

convergence analysis (and practice) shows that it is important to assure Δx ≪ ε

(or npart >> Ncells)

➔ need many particles to limit numerical noise in field evaluation

➔ expensive

Advantages and drawback of Lagrangian (grid-free) particle methods

!7

Can Eulerian methods provide reasonable alternative in d>1 ?

Yes, if used in multi-resolution modes

Recent work by Deriaz and Periani (SIAM MMS 2018) : multi-resolution method
based on wavelet analysis and third order finite-difference methods

(despite lack of conservativity, numerical diffusion, and CFL conditions)

Enables simulations of 6D gravitational systems with acceptable memory and CPU
times requirements

Suffers difficulties related to finite-difference solvers (in particular numerical diffusion)

Is there room for methods in-between
grid-free particle methods and eulerian methods

with (bonus) multi-resolution capabilities ?

!8

Semi-Lagrangian methods are good candidates :

• they are well-adapted to advection-dominated problems (low
numerical diffusion, even for low order methods)

• not constrained by CFL conditions

!9
5

Classical	semi-Lagrangian	methods	for	transport	and	Vlasov		
(Cruseilles	et	al	2009,	Sonnendrucker	et	al	2010	..):

Backward	Semi-Lagrangian	:	
go	backward	on	trajectories,		
interpolate	from	grid	values

N. Crouseilles et al. / Computer Physics Communications 180 (2009) 1730–1745 1735

Fig. 1. Principle of FSL (left) and BSL (right) for linear splines.

Remark 3.1. If the linear transport equation

∂ f
∂t

+ v
∂ f
∂x

= 0

for fixed v is solved, we can prove that FSL and BSL are in fact identical. The characteristic curve is for FSL:

X
(
tn+1; xk, tn)

= xk + v"t = xk + ξ

whereas for BSL we have

X
(
tn; xk, tn+1) = xk − v"t = xk − ξ .

Keeping the same notations as previously, we get for FSL:

f
(
tn+1, xi

)
=

∑

k

ωn
k S(xi − xk − ξ).

In the BSL case, it comes:

f
(
tn+1, xi

)
=

∑

k

ωn
k S

(
xk − (xi − ξ)

)
=

∑

k

ωn
k S(xi − xk − ξ)

as the spline is even. So, if a splitting method where each transport phase is with constant velocity is used, actually, both FSL and BSL
are exactly the same, and enjoy the same convergence and especially the stability properties. These have been proved for BSL in [4],
Theorem 4.2, pp. 18–20.

3.4. Basic differences between FSL and BSL

Let us now explain the basic differences between forward and backward semi-Lagrangian methods (see Fig. 1). In both cases, a finite
set of mesh points (xm)m= 1...N is used, and the values of the function f at the mesh points at a given time step tn are considered. The
aim is to find the new values of f on the grid at the next time step tn+1.

BSL. For BSL, in order to find the (n + 1)th value of f at xm , we follow the characteristic curve which goes through xm , backward in time,
until time tn . The arrival point will be called the foot of the characteristics and does not necessarily coincide with a mesh point. Hence,
we use any interpolation technique to compute f at this point, knowing all the values of the mesh at this time. This leads to the new
value of f (xm). Let us summarize:

• find the foot of the characteristics X(tn) knowing X(tn+1) = xm (mesh point).
• interpolate using the grid function which is known at time tn .

FSL. For FSL, the principle is quite different. The characteristics beginning at time tn on the grid points are followed, during one time step,
and the end of the characteristics (i.e. at time tn+1) is found. At this moment, the known value is deposited to the nearest grid points
(depending on the chosen method). This deposition step is also performed in PIC codes on the spatial grid only, in order to get the sources
for the computation of the electromagnetic field. Once every grid points has been followed, the new value of f is obtained by summing
all contributions. The FSL method can be summarized as follows:

• find the end of the characteristics X(tn+1) leaving from X(tn) = xm (mesh point).
• deposit on the grid and compute the new particle weights.

4. Numerical results

This section is devoted to the numerical implementation of the forward semi-Lagrangian method. In particular, comparisons with the
backward semi-Lagrangian method will be performed to validate the new approach.

Forward	Semi-Lagrangian	:	
push	trajectories,		
deposit	mass	though	interpola@on	
reconstruct	grid	values	through	B-splines

N. Crouseilles et al. / Computer Physics Communications 180 (2009) 1730–1745 1735

Fig. 1. Principle of FSL (left) and BSL (right) for linear splines.

Remark 3.1. If the linear transport equation

∂ f
∂t

+ v
∂ f
∂x

= 0

for fixed v is solved, we can prove that FSL and BSL are in fact identical. The characteristic curve is for FSL:

X
(
tn+1; xk, tn)

= xk + v"t = xk + ξ

whereas for BSL we have

X
(
tn; xk, tn+1) = xk − v"t = xk − ξ .

Keeping the same notations as previously, we get for FSL:

f
(
tn+1, xi

)
=

∑

k

ωn
k S(xi − xk − ξ).

In the BSL case, it comes:

f
(
tn+1, xi

)
=

∑

k

ωn
k S

(
xk − (xi − ξ)

)
=

∑

k

ωn
k S(xi − xk − ξ)

as the spline is even. So, if a splitting method where each transport phase is with constant velocity is used, actually, both FSL and BSL
are exactly the same, and enjoy the same convergence and especially the stability properties. These have been proved for BSL in [4],
Theorem 4.2, pp. 18–20.

3.4. Basic differences between FSL and BSL

Let us now explain the basic differences between forward and backward semi-Lagrangian methods (see Fig. 1). In both cases, a finite
set of mesh points (xm)m= 1...N is used, and the values of the function f at the mesh points at a given time step tn are considered. The
aim is to find the new values of f on the grid at the next time step tn+1.

BSL. For BSL, in order to find the (n + 1)th value of f at xm , we follow the characteristic curve which goes through xm , backward in time,
until time tn . The arrival point will be called the foot of the characteristics and does not necessarily coincide with a mesh point. Hence,
we use any interpolation technique to compute f at this point, knowing all the values of the mesh at this time. This leads to the new
value of f (xm). Let us summarize:

• find the foot of the characteristics X(tn) knowing X(tn+1) = xm (mesh point).
• interpolate using the grid function which is known at time tn .

FSL. For FSL, the principle is quite different. The characteristics beginning at time tn on the grid points are followed, during one time step,
and the end of the characteristics (i.e. at time tn+1) is found. At this moment, the known value is deposited to the nearest grid points
(depending on the chosen method). This deposition step is also performed in PIC codes on the spatial grid only, in order to get the sources
for the computation of the electromagnetic field. Once every grid points has been followed, the new value of f is obtained by summing
all contributions. The FSL method can be summarized as follows:

• find the end of the characteristics X(tn+1) leaving from X(tn) = xm (mesh point).
• deposit on the grid and compute the new particle weights.

4. Numerical results

This section is devoted to the numerical implementation of the forward semi-Lagrangian method. In particular, comparisons with the
backward semi-Lagrangian method will be performed to validate the new approach.

1732 N. Crouseilles et al. / Computer Physics Communications 180 (2009) 1730–1745

The guiding-center model (2.3)–(2.4) also presents conserved quantities as the total number of particles and L2 norm of f (energy)
and E (enstrophy)

d
dt

∫ ∫
f (t, x, y)dx dy =

d∥ f (t)∥2
L2

dt
=

d∥E(t)∥2
L2

dt
= 0. (2.5)

2.3. Characteristic curves

We can re-write Vlasov equations in a more general context by introducing the characteristic curves

dX
dt

= U
(

X(t), t
)
. (2.6)

Let us introduce X(t, x, s) as the solution of this dynamical system, at time t whose value is x at time s. These are called the characteristics
of the equation. With X(t) a solution of (2.6), we obtain:

d
dt

(
f
(

X(t), t
))

= ∂ f
∂t

+ dX
dt

· ∇X f = ∂ f
∂t

+ U
(

X(t), t
)
· ∇X f = 0 (2.7)

which means that f is constant along the characteristics. Using the notations of [29] X(t; x, s) which the characteristic at time t which
was in the phase space position x at time s, it can be written

f
(

X(t; x, s), t
)
= f

(
X(s; x, s), s

)
= f (x, s)

for any times t and s, and any phase space coordinate x. This is the key property used to define semi-Lagrangian methods for the solution
of a discrete problem.

3. The forward semi-Lagrangian method

In this section, we present the different stages of the forward semi-Lagrangian method (FSL) and try to emphasize the differences with
the traditional backward semi-Lagrangian method (BSL).

3.1. General algorithm

Let us consider a grid of the studied space (possibly phase-space) with Nx and N y the number of points in the x-direction [0, Lx] and
in the y-direction [0, L y]. We then define

"x = Lx/Nx, "y = L y/N y, xi = i"x, y j = j"y,

for i = 0, . . . , Nx and j = 0, . . . , N y . One important point of the present method is the definition of the approximate distribution functions
which are projected on a cubic B-splines basis:

f (t, x, y) =
∑

k,l

ωn
k,l S

(
x − X1

(
t; xk, yl, tn))

S
(

y − X2
(
t; xk, yl, tn))

, (3.8)

where X(t; xk, yl, tn) = (X1, X2)(t; xk, yl, tn) corresponds to the solution of the characteristics at time t (of the two-dimensional system
(2.6)) whose value at time tn was the grid point (xk, yl). The cubic B-spline S is defined as follows

6S(x) =

⎧
⎨

⎩

(2 − |x|)3 if 1 ! |x| ! 2,

4 − 6x2 + 3|x|3 if 0 ! |x| ! 1,

0 otherwise.

In the expression (3.8), the weight wn
k,l is associated to the particle located at the grid point (xk, yl) at time tn; it corresponds to the

coefficient of the cubic spline determined by the following interpolation conditions

f
(
tn, xi, y j

)
=

∑

k,l

ωn
k,l S

(
xi − X1

(
tn; xk, yl, tn))

S
(

y j − X2
(
tn; xk, yl, tn))

=
∑

k,l

ωn
k,l S(xi − xk)S(y j − yl).

Adding boundary conditions (for example the value of the normal derivative of f at the boundaries, we obtain a set of linear systems in
each direction from which the weights ωn

k,l can be computed as in [15,29]).
We can now express the full algorithm for the forward semi-Lagrangian method

• Step 0: Initialize f 0
i, j = f0(xi, y j).

• Step 1: Compute the cubic splines coefficients ω0
k,l such that

f 0
i, j =

∑

k,l

ω0
k,l S(xi − xk)S(y j − yl).

• Step 2: Integrate (2.6) from tn to tn+1, given as initial data the grid points X(tn) = (xk, yl) to get X(t; xk, yl, tn) for t ∈ [tn, tn+1],
assuming the advection velocity U is known. We shall explain in the sequel how it is computed for our typical examples.

!10

In (2D) FSL methods, to advance from time step tn to tn+1, the solution is represented on a B-
spline basis :

1732 N. Crouseilles et al. / Computer Physics Communications 180 (2009) 1730–1745

The guiding-center model (2.3)–(2.4) also presents conserved quantities as the total number of particles and L2 norm of f (energy)
and E (enstrophy)

d
dt

∫ ∫
f (t, x, y)dx dy =

d∥ f (t)∥2
L2

dt
=

d∥E(t)∥2
L2

dt
= 0. (2.5)

2.3. Characteristic curves

We can re-write Vlasov equations in a more general context by introducing the characteristic curves

dX
dt

= U
(

X(t), t
)
. (2.6)

Let us introduce X(t, x, s) as the solution of this dynamical system, at time t whose value is x at time s. These are called the characteristics
of the equation. With X(t) a solution of (2.6), we obtain:

d
dt

(
f
(

X(t), t
))

= ∂ f
∂t

+ dX
dt

· ∇X f = ∂ f
∂t

+ U
(

X(t), t
)
· ∇X f = 0 (2.7)

which means that f is constant along the characteristics. Using the notations of [29] X(t; x, s) which the characteristic at time t which
was in the phase space position x at time s, it can be written

f
(

X(t; x, s), t
)
= f

(
X(s; x, s), s

)
= f (x, s)

for any times t and s, and any phase space coordinate x. This is the key property used to define semi-Lagrangian methods for the solution
of a discrete problem.

3. The forward semi-Lagrangian method

In this section, we present the different stages of the forward semi-Lagrangian method (FSL) and try to emphasize the differences with
the traditional backward semi-Lagrangian method (BSL).

3.1. General algorithm

Let us consider a grid of the studied space (possibly phase-space) with Nx and N y the number of points in the x-direction [0, Lx] and
in the y-direction [0, L y]. We then define

"x = Lx/Nx, "y = L y/N y, xi = i"x, y j = j"y,

for i = 0, . . . , Nx and j = 0, . . . , N y . One important point of the present method is the definition of the approximate distribution functions
which are projected on a cubic B-splines basis:

f (t, x, y) =
∑

k,l

ωn
k,l S

(
x − X1

(
t; xk, yl, tn))

S
(

y − X2
(
t; xk, yl, tn))

, (3.8)

where X(t; xk, yl, tn) = (X1, X2)(t; xk, yl, tn) corresponds to the solution of the characteristics at time t (of the two-dimensional system
(2.6)) whose value at time tn was the grid point (xk, yl). The cubic B-spline S is defined as follows

6S(x) =

⎧
⎨

⎩

(2 − |x|)3 if 1 ! |x| ! 2,

4 − 6x2 + 3|x|3 if 0 ! |x| ! 1,

0 otherwise.

In the expression (3.8), the weight wn
k,l is associated to the particle located at the grid point (xk, yl) at time tn; it corresponds to the

coefficient of the cubic spline determined by the following interpolation conditions

f
(
tn, xi, y j

)
=

∑

k,l

ωn
k,l S

(
xi − X1

(
tn; xk, yl, tn))

S
(

y j − X2
(
tn; xk, yl, tn))

=
∑

k,l

ωn
k,l S(xi − xk)S(y j − yl).

Adding boundary conditions (for example the value of the normal derivative of f at the boundaries, we obtain a set of linear systems in
each direction from which the weights ωn

k,l can be computed as in [15,29]).
We can now express the full algorithm for the forward semi-Lagrangian method

• Step 0: Initialize f 0
i, j = f0(xi, y j).

• Step 1: Compute the cubic splines coefficients ω0
k,l such that

f 0
i, j =

∑

k,l

ω0
k,l S(xi − xk)S(y j − yl).

• Step 2: Integrate (2.6) from tn to tn+1, given as initial data the grid points X(tn) = (xk, yl) to get X(t; xk, yl, tn) for t ∈ [tn, tn+1],
assuming the advection velocity U is known. We shall explain in the sequel how it is computed for our typical examples.

and weights ωn+1 at time tn+1 are recovered by solving linear system :

N. Crouseilles et al. / Computer Physics Communications 180 (2009) 1730–1745 1733

• Step 3: Project on the phase space grid using (3.8) with t = tn+1 to get f n+1
i, j = f n+1(xi, y j).

• Step 4: Compute the cubic spline coefficients ωn+1
k,l such that

f n+1
i, j =

∑

k,l

ωn+1
k,l S(xi − xk)S(y j − yl).

• Go to Step 2 for the next time step.

3.2. FSL: An explicit solution of the characteristics

For BSL, especially for the solution of the characteristics, it is possible to choose algorithms based on two time steps with field
estimations at intermediate times. Generally, you have to use a fixed-point algorithm, a Newton–Raphson method (see [29]), a prediction
correction one or also Taylor expansions (see [15]) in order to find the foot of the characteristics. This step of the global algorithm costs a
lot (see [29]). It is no longer needed in FSL, where the starting point of the characteristics is known so that traditional methods to solve
ODEs, like Runge–Kutta algorithms can be incorporated to achieve high-order accuracy in time. Let us show the details of this explicit
solution of the characteristics, in Vlasov–Poisson and Guiding-Center models.

In both cases, the dynamical system (2.6) has to be solved. With FSL, X(tn), U (X(tn), tn) are known. You can choose your favorite way of
solving this system on each time step, since the initial conditions are explicit. This leads to the knowledge of X(tn+1) and U (X(tn+1), tn+1)
so that Step 2 of the previous global algorithm is completed.

As examples of forward solvers for the characteristic curves, the second-order Verlet algorithm, Runge–Kutta 2 and Runge–Kutta 4 will
be proposed for Vlasov–Poisson, and, as Verlet cannot be applied, only Runge–Kutta 2 and 4 will be used for the Guiding-Center model.

For Vlasov–Poisson, we denote by X(tn) = (X1(tn), X2(tn)) = (xn, vn) the mesh of the phase space, and U (X(tn), tn) = (vn, E(xn, tn)) the
advection velocity. The Verlet algorithm can be written

• Step 1: ∀k, l, vn+1/2
k,l − vn

l = "t
2 E(xn

k , tn).

• Step 2: ∀k, l, xn+1
k,l − xn

k = "tvn+1/2
k,l .

• Step 3: compute the electric field at time tn+1:
– deposition of the particles xn+1

k,l on the spatial grid xi for the density ρ: ρ(xi, tn+1) = ∑
k,l ω

n
k,l S(xi − xn+1

k,l), like in a PIC method;
– solve the Poisson equation on the grid xi : E(xi, tn+1).

• Step 4: ∀k, l, vn+1
k,l − v

n+ 1
2

k,l = "t
2 E(xn+1

k,l , tn+1).

Let us remark that the particles (which are in our case the grid points) move in the two-dimensional phase space; hence a double index
(k, l) is necessary to denote the position and the velocity of the particles.

A second- or fourth-order Runge–Kutta algorithm can also be used to solve the characteristic curves of the Vlasov–Poisson system
forward in time. The fourth-order Runge–Kutta algorithm needs to compute intermediate values in time of the density and the electric
field. Let us detail the algorithm omitting the indices k, l for the sake of simplicity

• Step 1: k1 = (vn, E(xn, tn)) = (k1(1),k1(2)).
• Step 2: compute the electric field at intermediate time t1:

– deposition of the particles on the spatial grid xi for the density ρ: ρ(xi, t1) = ∑
k,l ω

n
k,l S[xi − (xn

k + "t/2k1(1))];
– solve the Poisson equation on the grid xi : E(xi, t1).

• Step 3: compute k2 = (vn + "t
2 k1(2), E(xn + "t

2 k1(1), t1)).
• Step 4: compute the electric field at intermediate time t2:

– deposition of the particles on the spatial grid xi for the density ρ: ρ(xi, t2) = ∑
k,l ω

n
k,l S[xi − (xn

k + "t/2k2(1))];
– solve the Poisson equation on the grid xi : E(xi, t2).

• Step 5: compute k3 = (vn + "t
2 k2(2), E(xn + "t

2 k2(1), t2)).
• Step 6: compute the electric field at intermediate time t3:

– deposition of the particles on the spatial grid xi for the density ρ: ρ(xi, t3) = ∑
k,l ω

n
k,l S[xi − (xn

k + "t k3(1))];
– solve the Poisson equation on the grid xi : E(xi, t3).

• Step 7: compute k4 = (vn + "tk3(2), E(xn + "tk3(1), t3)).
• Step 8: Xn+1 − Xn = "t

6 [k1 + 2k2 + 2k3 + k4].

In both Verlet and Runge–Kutta algorithms, the value of E at intermediate time steps is needed (step 3 for Verlet and steps 3, 5 and
7 for Runge–Kutta 4). This is achieved as in PIC algorithms by advancing the particles (which coincide at time tn with the mesh in this
method) up to the required intermediate time. Using a deposition step, the density is computed thanks to cubic splines of coefficients wn

i
on the mesh at the right time, and thus the electric field can also be computed at the same time thanks to the Poisson equation. Using
an interpolation operator, the electric field is then evaluated at the required location (in steps 3, 5 and 7). Let us remark that this step
involves a high-order interpolation operator (cubic spline for example) which has been proved in our experiments to be more accurate
than a linear interpolation (see Section 4).

For the Guiding-Center equation, the explicit Euler method, and also Runge–Kutta type methods (of order 2, 3 and 4) have been
implemented. There is no technical difficulty with computing high-order methods. This is one of the general interests of forward methods.
The time algorithm for solving the characteristics at the fourth-order is similar to those presented in the Vlasov–Poisson case. However,
there is a additional difficulty in the deposition step which enables to evaluate the density at intermediate time steps; indeed, the
deposition is two-dimensional since the unknown does not depend on the velocity variable in this case.

Conservative methods can be constructed along similar lines

Drawbacks:

• cost (linear system)

• memory requirements (like Eulerian methods, need full grids)

• high order ?

So far, used mostly (only ?) for low-dimensional (1+1D) systems

!11

• try to combine natural adaptivity of particles with accuracy of Semi-Lagrangian
methods

• well established for 3D level-set methods and complex flow calculations but (almost)
never used so far for Vlasov-Poisson

Principle:

• initialize particles in support of f and push them with local velocities (like regular

particles)

• remesh at each time-step with high order interpolation formulas

• retain after remeshing only particles with strength above a given cut-off

Other approach to Semi-Lagrangian methods: remeshed particle methods

 12

Remeshed particle methods

Idea goes back to the 80’s:
Krasny’s 2D vortex sheet, Meiburg’s 3D jets, and Chorin’s and Leonard’s hairpin
removal
Insert fresh particles «in between» old particles when needed
Specific to problems with topology control

More generic approach : remesh particles on regular grids through standard 3D
interpolation formulas.

Criterium for remeshing schemes :
conservation of the moments of the particle distribution:

✓
n+1
i =

X

j

✓
n
j �

x
n+1
j � xi

�x

!
, ✓

n
j = ✓(xj , tn) (1)

j = i+ k ✓j = ✓i + k�x ✓
0(xi) +O(�x

2)

x
n+1
j = xj + uj�t = xi + k�x+ ui�t+ [u(xi + k�x)� u(xi)]

�

x
n+1
j � xi

�x

!
= � (k + �i + ⌫[u(xi + k�x)� u(xi)])

⌫ = �t/�x , �i = ui⌫

= �(k + �i) + k�t u
0(xi)�

0(k + �i) +O(�x
2)

✓
n+1
i =

X

k

⇥
✓(xi) + k�x ✓

0(xi) +O(�x
2)
⇤ ⇥

�(k + �i) + k�t u
0(xi)�

0(k + �i) +O(�x
2)
⇤

✓
n+1
i = ✓(xi)��t u(xi) ✓

0(xi)��t u
0(xi) ✓(xi)| {z }

��t(u ✓)0(xi)

+O(�t
2 +�x

2)

X

k

k �(k + �i) = ��i ,

X

k

k �0(k + �i) = �1

Z
f dx ,

Z
x f dx ,

Z
x2

f dx · · ·

1Allowed first high resolution DNS of flow past cylinders at high Reynolds numbers
(Koumoutsakos & Leonard, JFM 1995), … before spectral element calculations

 13

Traditionally, work with tensor products of 1D formulas

Typical interpolation formulas :
•conservation of 3 moments (third order truncation error) use 3 points in
each direction
smooth version uses an additional grid point -> 4 grid points

•conservation of 5 moments (5th order truncation error) use 5 points
smooth version spread particle on 6 nearest grid points

•resulting stencils in 3D : 27, 64, 125, 216 points

Until recently particle remeshing was considered as an ad-hoc fix,
and momentum conservation properties as safeguard

if advection of particles is split direction by direction, reduces to one-
dimensional stencils

!14

Particle methods with remeshing at every time-step can be viewed and analyzed as
forward semi-lagrangian methods (C. et al, M2AN 2014)

How they work:

1) particles on a grid
2) push particles with local velocity values
3) remesh particles on the grid, through interpolation

In 1 D for advection equation

depend on the time-stepping scheme and 𝛤 is a piecewise polynomial kernel where	

Brief Article

The Author

November 5, 2013

@✓

@t
+ ~u · ~r✓ = ~r ·

⇣
~r✓

⌘
(1)

@~u

@t
+ ~u · ~r~u = ~r ·

⇣
⌫ ~r~u

⌘
+ ~rp , ~r · ~u = 0 (2)

�xu

�x✓ ' �xu
p
Sc

) N ✓ '
p
ScNu

✓i =

i+N/2X

p=i�N/2

�x✓✓p⇤(xi � xp),

xn+1
i = xi + ũni �t (3)

In the above equation ãni denotes an evaluation of the velocity field at time tn = n�t and location
xi which depends on the chosen time-stepping scheme. Remeshing follows, through interpolation
with a remeshing kernel � which satisfies �(�x) = �(x). If uni denotes the value approximating
u(xi, tn), this gives the following formula :

✓n+1
i =

X

j

✓nj �

xn+1
j � xi

�x✓

!
, i 2 Zd (4)

1

Brief Article

The Author

December 6, 2017

@✓

@t
+ ~u · ~r✓ = ~r ·

⇣
~r✓

⌘
(1)

✓t + u ✓x = 0

@~u

@t
+ ~u · ~r~u = ~r ·

⇣
⌫ ~r~u

⌘
+ ~rp , ~r · ~u = 0 (2)

�xu

�x✓ ' �xu
p
Sc

) N ✓ '
p
ScNu

✓i =

i+N/2X

p=i�N/2

�x✓✓p⇤(xi � xp),

g

✓
up +

�t

2

dup
dt

◆

xn+1
i = xi + ũni �t (3)

In the above equation ãni denotes an evaluation of the velocity field at time tn = n�t and location
xi which depends on the chosen time-stepping scheme. Remeshing follows, through interpolation
with a remeshing kernel � which satisfies �(�x) = �(x). If uni denotes the value approximating
u(xi, tn), this gives the following formula :

✓n+1
i =

X

j

✓nj �

xn+1
j � xi

�x✓

!
, i 2 Zd (4)

1

Brief Article

The Author

November 5, 2013

@✓

@t
+ ~u · ~r✓ = ~r ·

⇣
~r✓

⌘
(1)

@~u

@t
+ ~u · ~r~u = ~r ·

⇣
⌫ ~r~u

⌘
+ ~rp , ~r · ~u = 0 (2)

�xu

�x✓ ' �xu
p
Sc

) N ✓ '
p
ScNu

✓i =

i+N/2X

p=i�N/2

�x✓✓p⇤(xi � xp),

xn+1
i = xi + ũni �t (3)

In the above equation ãni denotes an evaluation of the velocity field at time tn = n�t and location
xi which depends on the chosen time-stepping scheme. Remeshing follows, through interpolation
with a remeshing kernel � which satisfies �(�x) = �(x). If uni denotes the value approximating
u(xi, tn), this gives the following formula :

✓n+1
i =

X

j

✓nj �

xn+1
j � xi

�x✓

!
, i 2 Zd (4)

1

✓n+1
i =

X

j

✓nj �

xn+1
j � xi

�x

!
, i 2 Zd (5)

�t k~r~uk�1
1

⇢(x, t) = q

Z
f(x,v, t) dv

i(x, t) = q

Z
v f(x,v, t) dv

fh(x,v, t) =
X

p

↵p �(x�Xp(t))⌦ �(v�Vp(t))

Ẋp(t) = Vp , V̇p(t) = E(Xp) +Vp ⇥B(Xp)

div E = ⇢ = C + q

Z
f(x,v, t) dv

Z
⇢(x, t) dx ⌘ 0

E(x, t) = q
X

p

K✏ (x�Xp(t))

2

method can be described by the following equations:

interpolation property :

!15

for all sequences (uni). It is readily seen that this is equivalent to the following moments conditions for the
remeshing kernel � X

k2Z
k
↵�(x� k) = x

↵
, 0 ↵ p, x 2 R (2.5)

or
X

k2Z
(x� k)↵�(x� k) =

(
1 if ↵ = 0

0 if 1 ↵ p
, x 2 R. (2.6)

Note that for ↵ = 0 these conditions enforce the conservation of mass. Using these identities for a given
value of p and assuming that the kernel � remeshes particle weights among the p+ 1 nearest grid points,
one find a piecewise polynomial function of degree p. For p = 1 one obtains the piecewise linear tent
function. With p = 2 one obtains a piecewise quadratic function, the so-called ⇤2 formula, that has
been used with success in the first particle simulation of the Navier-Stokes equations using remeshing in
a systematic fashion [10].

This derivation method is straightforward but has the drawback that it does not deliver smooth kernels.
The kernel ⇤2 is not even continuous (this is the case more generally for kernels corresponding to even
values of p; for odd values, the kernels are continuous but their derivatives are discontinuous). This lack
of smoothness results in a loss of accuracy . In [15] local correction techniques where derived to guarantee
at least first oder for the kernel ⇤2 and third order for the analogous kernel ⇤4 corresponding to p = 4.

To derive smooth kernels, one option is to use extrapolation techniques starting from smooth B-splines.
If we denote by M1 the top-hat filter with support in [�1/2,+1/2], and by Mn its successive convolution
: Mn = M

(⇤n)
1 2 W

k,1(R). One then derives linear combinations of Mn, xM 0
n, x2M 00

n , .. to cancel the
successive continuous moments of �. More precisely, given an even integer p > 1 one looks for coefficients
↵1, · · · ,↵p/2+1 such that � =

Pp/2
l=0 ↵l+1x

l
M

(l)
k satisfies

Z
y
↵�(y) dy =

(
1 if ↵ = 0

0 if 1 ↵ p.
(2.7)

For symmetry reasons these conditions need only be enforced for even values of ↵. This leads to a square
linear system of size 1 + p/2 the coefficients of which only involve the even moments of Mk. With this
method , one obtains the following kernels

� =
1

2
(3M4 + xM

0
4), (2.8)

and
� =

1

8
(15M8 + 9xM 0

8 + x
2
M

00
8). (2.9)

The first formula corresponds to a kernel of class C
1, piecewise quadratic, with a support of size 4 and

p = 2. It was derived under the name of M 0
4 in [16] and has been and still is extensively used in particle

simulations, in particular of vortex flows. The second formula corresponds to a kernel of class C4, piecewise
polynomial of degree 7, with a support of size 8 and p = 4.

The moment conditions (2.7) concern continuous moments of the kernel. To check that the discrete
moment conditions (2.6) are satisfied as well, one can use an equivalent condition using the Fourier
transform of the kernel [25, 6]. If

b�(k) =
Z

�(y)e�iky
dy,

it can be shown ([6]) that the properties (2.5) are satisfied provided b� fulfills the following conditions:

b�(k)� 1 has a zero of order p+ 1 at k = 0

3

𝛤 is defined by regularity and moment properties :

b�(k) has a zero of order p+ 1 at all k = 2⇡m,m 6= 0.

Since b�(↵) is proportional to y
↵�(y), the first condition above is clearly equivalent to the conditions (2.7).

Moreover one has
cM1(k) =

sin (k/2)

k/2

and thus
cMn(k) =

sin (k/2)

k/2

�n
.

As a result the Fourier transform of the functions xlM (l)
k has a zero of order k� l at all non zero multiple

of ⇡. From these observations, one can easily check that the kernels (2.8), and (2.9) do satisfy the discrete
moment conditions (2.5) with p = 2 and p = 4n respectively.

This approach leads to smooth and high order kernels. However the kernels derived in this fashion do not
necessarily satisfy the following exactness property

�(i) =

(
1 if i = 0,

0 otherwise.
(2.10)

Indeed the so-called kernel M 0
4 does satisfy this condition, but not the one derived above from M8. Property

(2.10) ensures that, if the velocity is zero, the exact solution is algebraically conserved. Although this
property does not enter the numerical analysis that follows, in practice it seems to have some importance,
in particular to represent accurately the smallest scales in the turbulent flows considered in [?].

One can actually derive kernels which satisfy simultaneously and to any given order, regularity, moment
conditions and the exactness property. For a sake of simplicity, in the following we restrict ourselves to
kernels which involve an even number 2Ns of grid points. We seek kernels � that have the following
properties :

P1 � has support in [�Ns,+Ns],

P2 � is even and piecewise polynomial of degree M in intervals of the form [i, i+ 1],

P3 � is of class C
r,

P4 � satisfies the moment properties (2.6) for a given value of p,

P5 � satisfies the exactness property (2.10).

Such kernels are determined by Ns(M + 1) coefficients. The regularity property P3 impose Ns(r + 1)
interface conditions at integer values , and ([r + 1)/2] conditions to express that derivatives of odd order
vanish at zero. The properties P4 and P5 impose p+1+Ns conditions. One reasonable constraint under
which one can expect to find kernels satisfying these conditions is therefore

Ns(M + 1) � (r + 1)Ns + ([r + 1)/2] + p+ 1 +Ns

The table?? lists several kernels that have been obtained through this approach by symbolic calculations.
In this table, the kernels have been labelled by 2 indices that refer to the regularity and the order to which
moment conditions are satisfied, as we will see that these are the parameters which control the order of
accuracy of the RPM : ⇤p,r is a kernel in W

r,1(R) which satisfies (2.5). ⇤4,2 corresponds to the kernel M 0
4

already mentioned. Let us point out that the kernel ⇤4,2 was derived with this approach and used for the
first time in [2] under the name of M 0

6. For a sake of completeness, we have provided in the appendix the
analytical formulas for the kernels which are considered in the numerical experiments of section 4: ⇤2,1,
⇤2,2, ⇤4,2, ⇤4,4 and ⇤6,4.

4

Moments (p in 2.5) Regularity Nb of grid points in stencil Degree Support

⇤2,1 2 C
1 4 3 [�2; 2]

⇤2,2 2 C
2 4 5 [�2; 2]

⇤2,3 2 C
3 4 7 [�2; 2]

⇤2,4 2 C
4 4 9 [�2; 2]

⇤4,2 4 C
2 6 5 [�3; 3]

⇤4,3 4 C
3 6 7 [�3; 3]

⇤4,4 4 C
4 6 9 [�3; 3]

⇤6,3 6 C
3 8 7 [�4; 4]

⇤6,4 6 C
4 8 9 [�4; 4]

⇤6,5 6 C
5 8 11 [�4; 4]

⇤6,6 6 C
6 8 13 [�4; 4]

⇤8,4 8 C
4 10 9 [�5; 5]

Table 1: Kernels of various regularity, moment properties and complexity. In bold, the kernels that are
considered in the numerical experiments.

3 Numerical Analysis

We consider in this section RPM with kernels satisfying the moment properties (2.5) and the following
regularity conditions :

� 2 W
r,1(R) and � 2 C

1 (]l, l + 1[) , l 2 Z. (3.1)

The RPM is defined by the formulas (2.2), (2.3) and we will denote by Tiu(·, tn) the result of the scheme
(2.3), at the grid point xi, starting from grid values u(xj , tn).

In this section we are interested by the stability and spatial accuracy of the method. For a sake of
simplicity we will therefore assume that a does not depend on time and that particles advance with an
explicit first-order Euler scheme. In this case we simply have ã

n
j = a(xnj).

A striking feature of RPM, common with all semi-lagrangian methods, is that their stability does not rely
on CFL conditions. In this section we prove stability and consistency results under the condition

�t
M

ka0kL1
(3.2)

for a given constant M < 1. This condition in particular ensures that particle trajectories cannot intersect.
The constant M is often called Lagrangian CFL number (in short LCFL).

3.1 Consistency

We will prove the following consistency results

Proposition 1 Assume that the condition (3.2) is satisfied, and that the moment and regularity conditions
(2.5), (3.1) hold for some r, p > 1. Assume further . Let T > 0 and assume further that a and the solution
u to equation (2.1) belong to L

1 (0, T ;W r,1(R)). Then, if we set � = inf (r � 1, p), the following estimate
holds

u(xi, t
n+1) = Ti(u(·, t

n)) +O(�t
2) +O(�t�x

� +�x
�+1 +�t

�+1). (3.3)

Moreover if every cell of size �x contains exactly one particle after an advection step, then � = p.

5

4 TITLE WILL BE SET BY THE PUBLISHER

The first formula corresponds to a kernel of class C1, piecewise cubic, with a support of size 4 and p = 2. It
was derived under the name of M 0

4 in [19] and has been and still is extensively used in particle simulations,
in particular of vortex flows. The second formula corresponds to a kernel of class C4, piecewise polynomial
of degree 7, with a support of size 8 and p = 4.

The moment conditions (2.7) concern continuous moments of the kernel. To check that the discrete
moment conditions (2.6) are satisfied as well, one can use an equivalent condition using the Fourier
transform of the kernel [7, 29]. If

b�(⇠) =
Z

�(y)e�i⇠y
dy,

it can be shown ([7]) that the properties (2.5) are satisfied provided b� fulfills the following conditions:

b�(⇠)� 1 has a zero of order p+ 1 at ⇠ = 0

b�(⇠) has a zero of order p+ 1 at all ⇠ = 2⇡m,m 6= 0.
Since b�(↵) is proportional to y

↵�(y), the first condition above is clearly equivalent to the conditions (2.7).
Moreover one has

cM1(⇠) =
sin (⇠/2)

⇠/2
and thus

cMn(⇠) =

sin (⇠/2)

⇠/2

�n
.

As a result, the Fourier transform of the functions xlM (l)
k has a zero of order k� l at all non zero multiple

of ⇡. From these observations, one can easily check that the kernels (2.8), and (2.9) do satisfy the discrete
moment conditions (2.5) with p = 2 and p = 4 respectively.

The approach just presented leads to smooth and high order kernels. However the kernels derived in this
fashion do not necessarily satisfy the following interpolation property

�(i) =

(
1 if i = 0,

0 otherwise.
(2.10)

Indeed the so-called kernel M
0
4 given in (2.8) does satisfy this condition, but not the one derived in

(2.9) from M8. Property (2.10) is natural as it ensures that, if the velocity is zero, the exact solution
is algebraically conserved. Although this property does not enter the numerical analysis that follows, in
practice it seems to have some importance, in particular to represent accurately the smallest scales in
turbulent flows.

One can derive kernels which satisfy simultaneously and to any given order, regularity, moment conditions
and the interpolation property. For a sake of simplicity, in the following we restrict ourselves to kernels
with a stencil covering an even number 2Ms of grid points. We seek kernels � that have the following
properties:

P1: � has support in [�Ms,+Ms],
P2: � is even and piecewise polynomial of degree M in intervals of the form [i, i+ 1],
P3: � is of class C

r,
P4: � satisfies the moment properties (2.5) for a given value of p,
P5: � satisfies the interpolation property (2.10).

Such kernels are determined by Ms(M + 1) coefficients. The regularity property P3 imposes Ms(r + 1)
interface conditions at integer values, and [(r + 1)/2] conditions to express that derivatives of odd order
vanish at zero. The properties P4 and P5 impose p+1+Ms conditions. One reasonable constraint under
which one can expect to find kernels satisfying these conditions is therefore

Ms(M + 1) � (r + 1)Ms + [(r + 1)/2] + p+ 1 +Ms.

regularity :

moment properties :

Convergence	result		(CoCet	et	al,	M2AN	2014)	:		
1)	the	spaCal	order	of	the	method	is	inf(p,r)	
2)	stability	holds	for	a	large	class	of	kernels	under	the	condiCon	

Brief Article

The Author

November 5, 2013

@✓

@t
+ ~u · ~r✓ = ~r ·

⇣
~r✓

⌘
(1)

@~u

@t
+ ~u · ~r~u = ~r ·

⇣
⌫ ~r~u

⌘
+ ~rp , ~r · ~u = 0 (2)

�xu

�x✓ ' �xu
p
Sc

) N ✓ '
p
ScNu

✓i =

i+N/2X

p=i�N/2

�x✓✓p⇤(xi � xp),

xn+1
i = xi + ũni �t (3)

In the above equation ãni denotes an evaluation of the velocity field at time tn = n�t and location
xi which depends on the chosen time-stepping scheme. Remeshing follows, through interpolation
with a remeshing kernel � which satisfies �(�x) = �(x). If uni denotes the value approximating
u(xi, tn), this gives the following formula :

✓n+1
i =

X

j

✓nj �

xn+1
j � xi

�x✓

!
, i 2 Zd (4)

�t k~r~uk�1
1

1

Remark	:																																is	some@mes	called	a	Lagrangian	CFL	condi@on	(LCFL)	with	LCFL	1

Brief Article

The Author

November 5, 2013

@✓

@t
+ ~u · ~r✓ = ~r ·

⇣
~r✓

⌘
(1)

@~u

@t
+ ~u · ~r~u = ~r ·

⇣
⌫ ~r~u

⌘
+ ~rp , ~r · ~u = 0 (2)

�xu

�x✓ ' �xu
p
Sc

) N ✓ '
p
ScNu

✓i =

i+N/2X

p=i�N/2

�x✓✓p⇤(xi � xp),

xn+1
i = xi + ũni �t (3)

In the above equation ãni denotes an evaluation of the velocity field at time tn = n�t and location
xi which depends on the chosen time-stepping scheme. Remeshing follows, through interpolation
with a remeshing kernel � which satisfies �(�x) = �(x). If uni denotes the value approximating
u(xi, tn), this gives the following formula :

✓n+1
i =

X

j

✓nj �

xn+1
j � xi

�x✓

!
, i 2 Zd (4)

�t k~r~uk�1
1

1

If at all times, each cell contains exactly one particle, order = p

!16

30 TITLE WILL BE SET BY THE PUBLISHER

Appendix

For a sake of completeness, we give here the analytical formulas for the kernels used in this work.

⇤2,1(x) =

8
><

>:

1� 5
2 |x|

2 + 3
2 |x|

3 0 6 |x| < 1

2� 4|x|+ 5
2 |x|

2 � 1
2 |x|

3 1 6 |x| < 2

0 2 |x|

⇤2,2(x) =

8
><

>:

1� |x|2 � 9
2 |x|

3 + 15
2 |x|

4 � 3|x|5 0 6 |x| < 1

�4 + 18|x|� 29|x|2 + 43
2 |x|

3 � 15
2 |x|

4 + |x|5 1 6 |x| < 2

0 2 |x|

⇤4,2(x) =

8
>>><

>>>:

1� 5
4 |x|

2 � 35
12 |x|

3 + 21
4 |x|

4 � 25
12 |x|

5 0 6 |x| < 1

�4 + 75
4 |x|�

245
8 |x|2 + 545

24 |x|
3 � 63

8 |x|
4 + 25

24 |x|
5 1 6 |x| < 2

18� 153
4 |x|+ 255

8 |x|2 � 313
24 |x|

3 + 21
8 |x|

4 � 5
24 |x|

5 2 6 |x| < 3

0 3 |x|

⇤4,4(x) =

8
>>>>>>>><

>>>>>>>>:

1� 5
4 |x|

2 + 1
4 |x|

4 � 100
3 |x|5 + 455

4 |x|6 � 295
2 |x|7 + 345

4 |x|8 � 115
6 |x|9 0 6 |x| < 1

�199 + 5485
4 |x|� 32975

8 |x|2 + 28425
4 |x|3 � 61953

8 |x|4 + 33175
6 |x|5

�20685
8 |x|6 + 3055

4 |x|7 � 1035
8 |x|8 + 115

12 |x|
9 1 6 |x| < 2

5913� 89235
4 |x|+ 297585

8 |x|2 � 143895
4 |x|3 + 177871

8 |x|4 � 54641
6 |x|5

+19775
8 |x|6 � 1715

4 |x|7 + 345
8 |x|8 � 23

12 |x|
9 2 6 |x| < 3

0 3 |x|

⇤6,4(x) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

1� 49
36 |x|

2 + 7
18 |x|

4 � 3521
144 |x|

5 + 12029
144 |x|6 � 15617

144 |x|7 + 1015
16 |x|8 � 1015

72 |x|9 0 6 |x| < 1

�877
5 + 72583

60 |x|� 145467
40 |x|2 + 18809

3 |x|3 � 54663
8 |x|4 + 390327

80 |x|5

�182549
80 |x|6 + 161777

240 |x|7 � 1827
16 |x|8 + 203

24 |x|
9 1 6 |x| < 2

8695� 656131
20 |x|+ 3938809

72 |x|2 � 158725
3 |x|3 + 2354569

72 |x|4 � 9644621
720 |x|5

+523589
144 |x|6 � 454097

720 |x|7 + 1015
16 |x|8 � 203

72 |x|
9 2 6 |x| < 3

�142528
5 + 375344

5 |x|� 3942344
45 |x|2 + 178394

3 |x|3 � 931315
36 |x|4 + 5385983

720 |x|5

�1035149
720 |x|6 + 127511

720 |x|7 � 203
16 |x|

8 + 29
72 |x|

9 3 6 |x| < 4

0 4 |x|

TITLE WILL BE SET BY THE PUBLISHER 31

⇤6,6(x) =

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

1� 49
36 |x|

2 + 7
18 |x|

4 � 1
36 |x|

6 � 46109
144 |x|7 + 81361

48 |x|8 � 544705
144 |x|9 + 655039

144 |x|10

�223531
72 |x|11 + 81991

72 |x|12 � 6307
36 |x|13, 0 6 |x| < 1

�44291
5 + 1745121

20 |x|� 15711339
40 |x|2 + 32087377

30 |x|3 � 7860503
4 |x|4 + 38576524

15 |x|5

�24659323
10 |x|6 + 84181657

48 |x|7 � 74009313
80 |x|8 + 17159513

48 |x|9

�7870247
80 |x|10 + 438263

24 |x|11 � 81991
40 |x|12 + 6307

60 |x|13, 1 6 |x| < 2

3905497� 424679647
20 |x|+ 3822627865

72 |x|2 � 2424839767
30 |x|3 + 3009271097

36 |x|4

�930168127
15 |x|5 + 305535494

9 |x|6 � 9998313437
720 |x|7 + 203720335

48 |x|8 � 137843153
144 |x|9

+22300663
144 |x|10 � 6126883

360 |x|11 + 81991
72 |x|12 � 6307

180 |x|
13
, 2 6 |x| < 3

�255622144
5 + 971097344

5 |x|� 15295867328
45 |x|2 + 5442932656

15 |x|3 � 2372571796
9 |x|4

+2064517469
15 |x|5 � 9563054381

180 |x|6 + 2210666335
144 |x|7 � 796980541

240 |x|8

+76474979
144 |x|9 � 43946287

720 |x|10 + 343721
72 |x|11 � 81991

360 |x|12 + 901
180 |x|

13 3 6 |x| < 4

0, 4 |x|

⇤8,4(x) =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

1� 205
144x

2 + 91
192x

4 � 6181
320 x

5 + 6337
96 x

6 � 2745
32 x

7 + 28909
576 x

8 � 3569
320 x

9 0 6 |x| < 1

�154 + 12757
12 x� 230123

72 x
2 + 264481

48 x
3 � 576499

96 x
4 + 686147

160 x
5

�96277
48 x

6 + 14221
24 x

7 � 28909
288 x

8 + 3569
480 x

9 1 6 |x| < 2
68776

7 � 1038011
28 x+ 31157515

504 x
2 � 956669

16 x
3 + 3548009

96 x
4 � 2422263

160 x
5

+197255
48 x

6 � 19959
28 x

7 + 144545
2016 x

8 � 3569
1120x

9 2 6 |x| < 3

�56375 + 8314091
56 x� 49901303

288 x
2 + 3763529

32 x
3 � 19648027

384 x
4 + 9469163

640 x
5

�545977
192 x

6 + 156927
448 x

7 � 28909
1152 x

8 + 3569
4480x

9 3 6 |x| < 4
439375

7 � 64188125
504 x+ 231125375

2016 x
2 � 17306975

288 x
3 + 7761805

384 x
4 � 2895587

640 x
5

+129391
192 x

6 � 259715
4032 x

7 + 28909
8064 x

8 � 3569
40320x

9 4 6 |x| < 5

0 5 |x|

Acknowledgements

The authors are grateful to M. Bergdorf, D. Rossinnelli and P. Koumoutsakos for enlightening discussions
on GPU implementation and the derivation of high order kernels. The first author gratefully acknowledges
support from Institut Universitaire de France. This research has been partially supported by the Agence
Nationale pour la Recherche (ANR) under Contracts No. ANR-2010-COSI-0009 and ANR-2010-JCJC-
091601.

References

[1] M. Bergdorf, G.-H. Cottet, and P. Koumoutsakos. Multilevel adaptive particle methods for convection-diffusion equa-
tions. SIAM Multiscale Modeling and Simulation, 4:328–357, 2005.

[2] M. Bergdorf and P. Koumoutsakos. A lagrangian particle-wavelet method. SIAM Multiscale Modeling and Simulation,
5:980–995, 2006.

[3] F. Büyükkeçeci, O. Awile, and I. Sbalzarini. A portable opencl implementation of generic particle-mesh and mesh-particle
interpolation in 2d and 3d. Parallel Computing, 39(2):94–111, February 2013.

[4] A. Chorin. Numerical study of slightly viscous flow. J. Fluid Mech., 57:785–796, 1973.
[5] C. Cocle, G. Winckelmans, and G. Daeninck. Combining the vortex-in-cell and parallel fast multipole methods for

efficient domain decomposition simulations. J. Comp. Phys., 227:9091–9120, 2008.
[6] C. Cotter, J. Frank, and S. Reich. The remapped particle-mesh semi-lagrangian advection scheme. Q. J. Meteorol. Soc.,

133:251–260, 2007.
[7] G.-H. Cottet and P. Koumoutsakos. Vortex methods. Cambridge University Press, 2000.

Examples	of	remeshing	kernels	(2nd	and	6th	order)

!17

16 TITLE WILL BE SET BY THE PUBLISHER

0,001 0,01
DX

1e-07

1e-06

1e-05

0,0001

0,001

0,01

0,1

1

Er
ro

r i
n

m
ax

im
um

 n
or

m

Kernel Order of convergence

⇤2,1 2.35
⇤2,2 3.15
⇤4,2 3.45
⇤4,4 4.25

Figure 2. Refinement study for the 1D advection equation (4.1) and several first to fourth
order RPM and CFL value equal to 12. Left picture : black-circle curve : kernel ⇤2,1; red-
square : kernel ⇤2,2; blue-diamond : kernel ⇤4,2; green-triangle : ⇤4,4; dashed lines indicate
slopes corresponding to second and fourth order convergence. Right table: average order
of convergence for these RPM.

Kernel Order of convergence

⇤2,1 1.87
⇤4,2 3.17
⇤6,4 5.92

Figure 3. Refinement study for the 2D advection field (4.2). CFL value is equal to 12.
Left picture : black-circle curve : kernel ⇤2,1; red-square : kernel ⇤4,2; blue-triangle : kernel
⇤6,4; dashed lines indicate slopes corresponding to second and fourth order convergence.
Right table: average order of convergence for these RPM.

clearly shows the gain obtained in his case by using high order kernels, even though the theoretical order
of convergence is limited by that of the dimensional splitting.

As already stressed, one distinctive feature of Semi Lagrangian Particles are that their stability and the
spatial order of convergence is not constrained by a CFL condition. To illustrate this property, we repeated

Error	in	maximum	norm	for	different	kernels	(order	1_2,	2_4	and	4_6)

Refinement study : case of a rotating patch in an off-center vorticity field

A LAGRANGIAN PARTICLE-WAVELET METHOD 987

the implementation of a narrow-band level set method: let η(s) be a mollification of
the Heaviside function, specifically

η(s) =

⎧
⎪⎨

⎪⎩

1, |s| ≤ β,

(|s|− γ)2 (2|s| + γ − 3β) (γ − β)−3, β < |s| ≤ γ,

0, |s| > γ,

(5.3)

where β and γ are parameters controlling the size of the narrow band. We now
smoothly truncate the detail coefficients of the MRA like

dl,µk ← dl,µk η
(
φ (hl+1)−1

)
.(5.4)

This truncation leads to a grid, which is refined only close to Γ(t) and thus results in
a level set φ, which is confined to a narrow band around Γ(t) on all levels except the
coarsest, which in general is very inexpensive to compute.

6. Kernels, scaling functions, and wavelets. The wavelets and scaling func-
tions we used to conduct the numerical experiments in the next section are interpolat-
ing wavelets [4, 7], based on the iterative interpolation scheme introduced by Deslau-
riers and Dubuc [3]. However, the formulation of the present method allows for the
utilization of other types of wavelets, e.g., second-generation wavelets or average-
interpolating wavelets. The order we chose is P = 4. The scaling function ϕ implied
by this choice is also known as the autocorrelation of Daubechies’ scaling function of
order 4 (Figure 6.1). For the interpolation of the indicator function (4.2) we use an
inexpensive bi-/trilinear kernel.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

M
(x

)

0.0 0.5 1.0 1.5 2.0
10-5

10-4

10-3

10-2

10-1

100

101

M̂
(k

)

k

Fig. 6.1. The three kernels, ϕ (), M ′
4 (), and M ′′′

6 (), in real space (left) and
spectral space (right), where ϕ is the autocorrelation of Daubechies’ scaling function of order 4 .

7. Numerical illustrations. In order to illustrate the Lagrangian adaptivity
of our method we have focused on a two-dimensional (2D) advection of a scalar with
a prescribed velocity field. We solve the problem of a passive scalar subject to a
single vortex in two frames: once as a plain advection problem, for which the exact
solution is known, and once in a level set frame, where we restrict our interest to the
development of an interface. The velocity field is given by [13]

u(x, t) = 2 cos(π t/T)

(
− sin2(π x) sin(π y) cos(π y)
sin2(π y) sin(π x) cos(π x)

)
.(7.1)

 18

3D case : comparisons with Weno and VOF methods

Enright et al, JCP 2002
3r order Weno
N=100 + 64 ppc

CFL=1 (?)
CPU =??

Vincent et al, JCP 2010
VOF

N=64 + 9 ppc
CFL=0.1

Implementation of grid-based methods
with particles for corrections

N=100, CFL=8 N=160, CFL=12
CPU time :

1 s per iteration

remeshed particle method, 4th order
remeshing,

2nd order in time

!19

20 TITLE WILL BE SET BY THE PUBLISHER

Figure 8. Isosurface u = 0.5 at t = 4.0 for the test case of the sphere in the flow (4.4)-(4.6)
with N = 256 and CFL = 30. Left picture: kernel ⇤2,1 ; right picture: kernel ⇤8,4.

physical scales resolved by these algorithms to the specific features of the processors involved in these
architectures.

A typical example is the case of turbulent transport in incompressible flows. Hybrid algorithms can be
designed to resolve in an optimal fashion the minimal scales present in the flow and in the advected
scalar [15]. Moreover in these hybrid approaches the different algorithms can have different parallel
scalability and it may be advantageous to distribute these algorithms to different type of processors. The
local nature of RPM make these methods well suited for highly parallel processors, like GPUs, and one
may envision simulations of transport at high Schmidt numbers in turbulent flows (that is when the scalar
smallest scales extend much beyond those of the flows) at very high resolution at a cost that does not
exceed that of the flow solver at a much lower resolution.

To be able to implement hybrid algorithms on hybrid architectures, one needs to develop high level
frameworks and libraries with a high level description which allows to distribute different solvers and grids
to different parts of the clusters in a seamless fashion.

In this section we first outline the general approach followed for this framework. We then go into more
details for a specific branch of this framework, namely the implementation on GPU of RPM. We detail
the performance of the different kernels associated to the different parts of the algorithm and the overall
performance of the GPU implementation of RPM. We in particular focus on the complexity of the RPM
using various high order kernels that have been derived and analyzed in the previous section.

5.1. Library description

In this library we use object oriented programming techniques to reach a high level of modularity, with a
strong focus on usability and flexibility. The goal is to enable the user to launch indifferently sequential,
parallel or hybrid numerical simulations. We use Python as an abstraction framework.

Our library currently provides two levels of parallelism, MPI and OpenCL. However, thanks to the
modularity it would also be possible to implement other parallelism paradigms such as task parallelism.

In order to achieve good portability, the computational frameworks are written using OpenCL C whenever
it will enable good performances on the target architecture. OpenCL is an open standard for parallel
programming of heterogeneous systems [21]. It provides application programming interfaces to address
hybrid platforms containing many CPUs and GPUs and a programming language based on C99 to write

20 TITLE WILL BE SET BY THE PUBLISHER

Figure 8. Isosurface u = 0.5 at t = 4.0 for the test case of the sphere in the flow (4.4)-(4.6)
with N = 256 and CFL = 30. Left picture: kernel ⇤2,1 ; right picture: kernel ⇤8,4.

physical scales resolved by these algorithms to the specific features of the processors involved in these
architectures.

A typical example is the case of turbulent transport in incompressible flows. Hybrid algorithms can be
designed to resolve in an optimal fashion the minimal scales present in the flow and in the advected
scalar [15]. Moreover in these hybrid approaches the different algorithms can have different parallel
scalability and it may be advantageous to distribute these algorithms to different type of processors. The
local nature of RPM make these methods well suited for highly parallel processors, like GPUs, and one
may envision simulations of transport at high Schmidt numbers in turbulent flows (that is when the scalar
smallest scales extend much beyond those of the flows) at very high resolution at a cost that does not
exceed that of the flow solver at a much lower resolution.

To be able to implement hybrid algorithms on hybrid architectures, one needs to develop high level
frameworks and libraries with a high level description which allows to distribute different solvers and grids
to different parts of the clusters in a seamless fashion.

In this section we first outline the general approach followed for this framework. We then go into more
details for a specific branch of this framework, namely the implementation on GPU of RPM. We detail
the performance of the different kernels associated to the different parts of the algorithm and the overall
performance of the GPU implementation of RPM. We in particular focus on the complexity of the RPM
using various high order kernels that have been derived and analyzed in the previous section.

5.1. Library description

In this library we use object oriented programming techniques to reach a high level of modularity, with a
strong focus on usability and flexibility. The goal is to enable the user to launch indifferently sequential,
parallel or hybrid numerical simulations. We use Python as an abstraction framework.

Our library currently provides two levels of parallelism, MPI and OpenCL. However, thanks to the
modularity it would also be possible to implement other parallelism paradigms such as task parallelism.

In order to achieve good portability, the computational frameworks are written using OpenCL C whenever
it will enable good performances on the target architecture. OpenCL is an open standard for parallel
programming of heterogeneous systems [21]. It provides application programming interfaces to address
hybrid platforms containing many CPUs and GPUs and a programming language based on C99 to write

!20

Semi-Lagrangian (or remeshed) particle methods for Vlasov-Poisson

First attempt: Myers, Colella, Van Straalen (SIAM J. Sci. Comput., 2017) :

• Successful application to 2+2D Landau damping

• Use of 2nd and 4th order kernels

• roadblock for higher dimension : need a full grid to remesh particles
• still n>N, and remeshing frequency to adjust

roadblock can be removed by using link-lists of particles
in lower dimensional spaces (C., JCP 2018)

!21

2D example : particles in (x,y) space, directional splitting of advection

1st sweep : horizontal advection

1 3 5

2

874

6

l=2, n(l)=1

l=3, n(l)=0

l=4, n(l)=3

l=5, n(l)=1

l=1, n(l)=3
ind(1)=1 ind(2)=3 ind(3)=5

sort particles by horizontal lines :

each particle on the line gets an address in the original list

!22

and reinitialize particles on this line where needed :

-> j=1:nx,		if	ug(i)	>	threshold	,	

	npart=npart+1,	xp(npart)=i*dh,	up(npart)=ug(i)

remesh

i=int(xp):int(xp)+1,	ug(i)=ug(i)+up*Γ(xp-i*dh) (for a 2 points formula)

Good news : Only 1d array for values on the grid !

Bad news : Need to label lines in a 6D space : 5d arrays

-> i=1:n(1)=3,

push

xp(l(i))=xp(l(i))+dt	*	vx(1)	

line l=1

!23

Good compromise between sizes of label and grid value arrays :

sort particles in 3D spaces : (x,y,z) spaces then (u,v,w) spaces

Memory requirements for 6D algorithm with Np particles :
• 7 main arrays of size Np for positions, velocity, distribution function

• 7 auxiliary arrays for same quantities

• 2 arrays of size Np to store particles addresses in link-list algorithm

• several 3D arrays for E, density, link-list

Remarks :
• accumulation of charges to compute density in a given (x,y,z) plane and calculation of

field are done simultaneously with particle sorting

• push-remesh line by line can still be (and is) done inside each 3D space to reduce
computational cost of high order remeshing kernels. Important for high order (large
stencils) kernels.

• uniform velocity in each line -> order of method given by number of moments of cut-off
(no need of regularity)

!24

Goal of simulations :
test accuracy / efficiency of SL particles on uniform grids

against MRA Eulerian methods and regular particle methods

+ periodic boundary conditions for E.

Example 1: 2+2D plasma two beams instability, SL with 4th order kernel

On top of these particles arrays, the algorithm requires several 3D arrays, but with a memory size194

which is a small fraction of that of the particle arrays. In most of our simulations the number of195

particles was of the order of 108 for a number of grid points in each 3D space of the order of 106. In196

the next section we will show the computational time involved at each stage of the algorithm.197

4. Four and Six dimensional benchmarks198

In this section we focus on two cases borrowed from [7] and which illustrates the capabilities and199

limits of the method in single core implementations : a 4D plasma instability and a 6D gravitational200

case. All our simulations were performed on an Intel Xeon E5-2640 core running at 2.5GHz.201

4.1. Four dimensional two-beams instability202

In this section we consider the Fijalkow Two Beams instability [9]. Following [7] the initial condition
is given by the following formula

f0(x, y, u, v) =
7

4⇡
exp

✓
�u

2 + 4v2

8

◆
sin2(

u

3
) (1 + 0.05 cos(0.3x)), (7)

and the computational box is the the rectangle

⌦ = [�10⇡

3
,
10⇡

3
]⇥ [�3⇡, 3⇡].

For this case, we used the remeshing kernel ⇤4,2 given by (5), which conserves the four first moments203

of the distribution function (and, as a result, is not positive) and which is twice differentiable. We204

recall that, although in principle this remeshing kernel leads to a second order transport scheme, in the205

particular case of the Vlasov Poisson equation with directional splitting it yields fourth order spatial206

accuracy.207

The cut-off value to create particles at the end of the remeshing step was taken equal to 10�5 and it208

was applied to the value of f and not its absolute values. In particular this has the effect of discarding209

any negative values which could result from the remeshing kernel.210

In the first experiment we monitor the conservation properties of the method and we use two sets211

of resolutions : a coarse grid with Nc = 644 grid points and a finer grid using Nf = 1284 grid points.212

We compare our results to the wavelet-based multi-resolution Eulerian solver in [7], with equivalent213

grid-sizes ranging from 324, at the coarsest level, to 2564 at the finest level, and which is based on a214

third order finite-difference scheme.215

9

On top of these particles arrays, the algorithm requires several 3D arrays, but with a memory size194

which is a small fraction of that of the particle arrays. In most of our simulations the number of195

particles was of the order of 108 for a number of grid points in each 3D space of the order of 106. In196

the next section we will show the computational time involved at each stage of the algorithm.197

4. Four and Six dimensional benchmarks198

In this section we focus on two cases borrowed from [7] and which illustrates the capabilities and199

limits of the method in single core implementations : a 4D plasma instability and a 6D gravitational200

case. All our simulations were performed on an Intel Xeon E5-2640 core running at 2.5GHz.201

4.1. Four dimensional two-beams instability202

In this section we consider the Fijalkow Two Beams instability [9]. Following [7] the initial condition
is given by the following formula

f0(x, y, u, v) =
7

4⇡
exp

✓
�u

2 + 4v2

8

◆
sin2(

u

3
) (1 + 0.05 cos(0.3x)), (7)

and the computational box is the the rectangle

⌦ = [�10⇡

3
,
10⇡

3
]2 ⇥ [�3⇡, 3⇡]2.

For this case, we used the remeshing kernel ⇤4,2 given by (5), which conserves the four first moments203

of the distribution function (and, as a result, is not positive) and which is twice differentiable. We204

recall that, although in principle this remeshing kernel leads to a second order transport scheme, in the205

particular case of the Vlasov Poisson equation with directional splitting it yields fourth order spatial206

accuracy.207

The cut-off value to create particles at the end of the remeshing step was taken equal to 10�5 and it208

was applied to the value of f and not its absolute values. In particular this has the effect of discarding209

any negative values which could result from the remeshing kernel.210

In the first experiment we monitor the conservation properties of the method and we use two sets211

of resolutions : a coarse grid with Nc = 644 grid points and a finer grid using Nf = 1284 grid points.212

We compare our results to the wavelet-based multi-resolution Eulerian solver in [7], with equivalent213

grid-sizes ranging from 324, at the coarsest level, to 2564 at the finest level, and which is based on a214

third order finite-difference scheme.215

9

MRA grid (Deriaz-Periani) 324-2564 number of particles on a 1284 grid

16 E. DERIAZ, S. PEIRANI

Threshold

Number of points

Time

N
u
m

b
er

 o
f

p
o
in

ts

0 10 20 30 40 50 60 70 80 90 100

0e+00

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

Fig. 15. Number of points and threshold along time. The threshold curve is linearly scaled in
order to fit the window.

L2 norm

Mass

Entropy

Total Energy

Time

R
el

at
iv

e
v
al

u
es

0 10 20 30 40 50 60 70 80 90 100

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

Fig. 16. Plot of theoretically conserved quantities: the mass, the L2-norm, the entropy and the
total energy. Relative values with respect to the initial quantities.

capture steep filamentations distributed homogeneously in the spatial domain (x, y).
It would probably work better if we refine only in the velocity (u, v) direction.

4.3. Six-dimensional astrophysics case: the merging of two halos of
dark matter. In order to apply the hierarchical basis adaptive scheme to a six-
dimensional phase space problem, we switch from plasma physics to astrophysics. In
plasma physics the distribution function tends to occupy the whole three-dimensional
physical space while in the gravitational case it collapses, allowing the adaptive scheme
to refine both in velocity variables and in space variables (see Fig. 18 and 21). As a re-

 7.8x10
7

 8x10
7

 8.2x10
7

 8.4x10
7

 8.6x10
7

 8.8x10
7

 9x10
7

 9.2x10
7

 0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

er
 o

f
p

ar
ti

cl
es

Time

Figure 1: Number of particles for the 4D Vlasov-Poisson two-beams instability with initial condition (7) and 1284 effective
grid resolution.

As already mentioned, in the particular case of the Vlasov-Poisson equation, the semi-Lagrangian216

particle method is unconditionally stable, and the time accuracy of the algorithm is only dictated by217

the (x, y, z)/(u, v, w) splitting. This splitting error is governed by the derivatives of velocity in the218

phase space, which are equal to 1 (for the three first components) and the spatial derivative of the219

electric field. For periodic boundary conditions, in energy norms these derivatives are in turn bounded220

by the density. In all our experiments the density value did not exceed 1 and we chose a constant221

value of 0.4 for the time-step. This time-step value correspond to a CFL value, based on the maximum222

particle velocity in the box, of 9 in the coarse grid case, and 18 in the finer grid case. Taking smaller223

time steps did not change the results shown below.224

Unlike in mesh-free particle methods, in semi-Lagrangian particle methods the support of the225

density function can increase as a result of remeshing. To measure this spreading effect we show in226

Figure 1 the particle numbers as a function of time for our run using the 1284 grid. Surprisingly, the227

number of particles slightly decrease to settle to a value around 8 107. For comparison, the multi-228

resolution method of [7] with equivalent resolution between 324 and 2564, used, beyond time t = 10,229

between 5 106 and 6 107 active grid points.230

10

!25

Qualitative comparison : cuts in (x,u) plane at t=12
(time of peak potential energy)

Figure 3: Same case as in Fig 1. Cut of the distribution function in the plane (x, u) at y = v = 0 and t = 12. Left picture :
present method; middle picture : result of [7]; right picture : multi-resolution grid used in [7] (red zones correspond to
an equivalent resolution of 256 grid points).

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 0 10 20 30 40 50 60 70 80 90 100

N
o

rm
al

iz
ed

 q
u
an

ti
ti

es

Time

 0.995

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 0 10 20 30 40 50 60 70 80 90 100

N
o

rm
al

iz
ed

 q
u
an

ti
ti

es

Time

Figure 4: Vlasov-Poisson two-beams instability with initial condition (7). Conservation properties with the present
method based on coarse grid (CG, 644) and fine grid (FG, 1284) grids. Left picture : mass (magenta curve : FG, green
curve : CG); norm L2 of f (blue curve : FG, yellow curve : CG). Right picture : energy (magenta curve : FG, green
curve : CG); entropy (blue curve : FG, yellow curve : CG).

12

SL isolines of f MRA isolines of f MRA grid

!26

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 0 10 20 30 40 50 60 70 80 90 100

N
o

rm
al

iz
ed

 q
u
an

ti
ti

es

Time

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 0 10 20 30 40 50 60 70 80 90 100

N
o

rm
al

iz
ed

 q
u
an

ti
ti

es

Time

Figure 2: Conservation properties for the same case as in Fig 1. Left picture : present method; right picture : multi-
resolution method of [7]. Magenta curve : mass; green curve : total energy; yellow curve : norm L2 of f ; bleu curve :
entropy.

We now turn to the conservation properties of the method. Figure 2 shows total mass, energy,231

entropy and L
2 norm of the distribution function f , normalized by their initial value, compared to the232

same quantities as obtained in [7]. Some observations can be made from these graphs, which highlight233

the differences between semi-Lagrangian schemes and Eulerian schemes. The conservation of mass and234

energy is almost perfect in the particle method, whereas in the calculations of [7] the energy tends235

to dissipate. The conservation of mass indicates that negative values resulting from remeshing with a236

fourth order kernel, and which in our implementation are discarded after remeshing, would only have237

marginal contributions. This confirms a similar observation made in [15]. The L
2 norm of f drops at238

about 96% of its initial value then settles. The entropy increases by 2% then settles.239

A further comparison of the solutions given by the two methods is given by Figure 3. This figure240

shows cuts of the distribution function in the (x, u) plane, at y = v = 0 at time t = 12, when the241

potential energy reaches its peak value (see Figure 6 for the time history of the potential energy). The242

two results are in perfect agreement.243

We now show the results obtained with a coarser background grid using 644 points and the same244

time step value �t = 0.4. Figure 4 shows the conservation properties for this coarse grid compared to245

the finer grid. One can see that even for the coarse grid the method conserves pretty well the invariants246

of the Vlasov-Poisson system. The good performance of the coarse grid simulation is confirmed by a247

11

Conservation properties :

total density, L2 norm, entropy and total energy ∫v2f dxdv + ∫E2 dx

MRA grid (Deriaz-Periani) 324-2564SL particle method grid with 1284 grid

energy

density

norm L2 of f

entropy

!27

Comparison of potential energy ∫E2 obtained by MRA and SL particles

at two resolutions

MRA

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

P
o

te
n

ti
al

 E
n
er

g
y

Time

Figure 6: Vlasov-Poisson two-beams instability with initial condition (7). Potential energy obtained with the present
method with a 1284 grid (green curve) and with a 644 grid (magenta curve) compared to the method in [7] (blue curve).

Figure 7: Breakdown of computational cost in the semi-Lagrangian particle method for the two-beams Vlasov-Poisson
instability.

14

SL particles with 644

SL particles with 1284

!28

First conclusions on this case :

• Accuracy of SL on uniform grids comparable to finite-difference MRA at higher local
resolution

• Diffusive effects visible on Eulerian scheme, even at high (local) resolution,
not seen on SL methods

!29

Comparison with pure PIC method on 2+2D Landau Damping

Brief Article

The Author

November 26, 2018

f0(x, y, u, v) =
1

2⇡
exp

�
�u2 � v2

�
(1 + 0.01 cos

x

2
cos

y

2
)

1

SL particles on 324 grid Classical PIC on 2562 cells,

with varying particle/cell ratio

(from Y. Barsamian PhD thesis)

!30

Good fit for longer times with higher resolution for SL particles

SL particles on 324 grid SL particles on 644 grid

!31

Example 2 : 6D gravitational system

interaction of 2 Kipling spheres

density isosurfaces

Figure 9: Density rendering for the initial condition (9) at times (from left to right, top to bottom) 0.7, 15.4, 20 and
25.6. Isosurfaces correspond to one third of the maximum density which is respectively 0.22, 0.36, 0.11 and 0.35.

gravity field E = �r� from the density ⇢(⌅) =
R
f(⌅,) d is

�� = 4⇡(⇢� ⇢̄),

where ⇢̄ = 1/|⌦|
R
⇢ d⌅ d , with periodic boundary conditions The interaction of the two blobs produce273

a complex dynamics as they collide then separate then collide again, as shown in Figure 9.274

This case is more challenging than the previous one not only because of the dimension of the phase275

space but also because of the sharp profile of the distribution function. For high order finite-difference276

and semi-Lagrangian particle methods as well, this means that negative values and spurious oscillations277

are expected to arise.278

As a matter of fact, and in strong contrast with the previous case, it turns out that discarding279

negative values in the remeshing stages of our algorithm as described in section 3 would severely280

damage the conservation of its invariants. A second observation is that, to obtain correct conservation281

16

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-10 0 10

f

x,u

Figure 8: Cross section in the plane (x, u) (left picture) and 1D cuts (right picture) corresponding to the distribution
function given by (8). Green (resp magenta) curve : cut in the u (resp x) direction.

4.2. Six dimensional gravitational case263

We now turn to a more challenging case which involves a six-dimensional Vlasov-Poisson system.264

We consider the case of two density blobs, each determined by a steady-state Plummer model [10],265

and interacting which each other. Again we will compare our results with the multi-resolution results266

of [7], using equivalent resolutions ranging between 326 and 5126, and also with results shown in this267

reference and provided by the GADGET grid-free particle software [20] (see Table 1 for the parameters268

of these simulations).269

The distribution function of each blob is given by the following formula :

fp(⌅,) =

(
3

7⇡3

�
2(1 + |⌅|2)�1/2 � | |2

�7/2
, if 2(1 + |⌅|2)�1/2 � | |2 � 0

0 otherwise,
(8)

where ⌅ = (x, y, z) and = (u, v, w) (see Figure 8). This distribution function leads to a steady-state270

solution of the Vlasov Poisson system with unit density. Figure 8 shows 2D and 1D cuts of f in the271

(x, u) plane, with all other variables set to 0.272

Following [7] we choose an initial condition given by

f0(x, y, z, u, v, w) = fp(x� a0, y, z � b0, u� c0, v, w) + fp(x, y � a0, z + b0, u, v � c0, w), (9)

with a0 = �6, b0 = �2, c0 = 0.3, in the box ⌦ = [�12,+12]6. The Poisson equation to obtain the

15

cuts of initial f-profile

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-10 0 10

f

x,u

Figure 8: Cross section in the plane (x, u) (left picture) and 1D cuts (right picture) corresponding to the distribution
function given by (8). Green (resp magenta) curve : cut in the u (resp x) direction.

4.2. Six dimensional gravitational case263

We now turn to a more challenging case which involves a six-dimensional Vlasov-Poisson system.264

We consider the case of two density blobs, each determined by a steady-state Plummer model [10],265

and interacting which each other. Again we will compare our results with the multi-resolution results266

of [7], using equivalent resolutions ranging between 326 and 5126, and also with results shown in this267

reference and provided by the GADGET grid-free particle software [20] (see Table 1 for the parameters268

of these simulations).269

The distribution function of each blob is given by the following formula :

fp(⌅,) =

(
3

7⇡3

�
2(1 + |⌅|2)�1/2 � | |2

�7/2
, if 2(1 + |⌅|2)�1/2 � | |2 � 0

0 otherwise,
(8)

where ⌅ = (x, y, z) and = (u, v, w) (see Figure 8). This distribution function leads to a steady-state270

solution of the Vlasov Poisson system with unit density. Figure 8 shows 2D and 1D cuts of f in the271

(x, u) plane, with all other variables set to 0.272

Following [7] we choose an initial condition given by

f0(x, y, z, u, v, w) = fp(x� a0, y, z � b0, u� c0, v, w) + fp(x, y � a0, z + b0, u, v � c0, w), (9)

with a0 = �6, b0 = �2, c0 = 0.3, in the box ⌦ = [�12,+12]6. The Poisson equation to obtain the

15

18 E. DERIAZ, S. PEIRANI

the problem in a two-dimensional plus one invariant simulation. It is given by the
following distribution function:

f(r, kvk) = 3M

7⇡3a3

2

✓
1 +

⇣
r

a

⌘2◆�1/2

� kvk2
!7/2

(19)

if 2

✓
1 +

⇣
r

a

⌘2◆�1/2

� kvk2 � 0

and f(r, kvk) = 0 otherwise.
We note r

2 = x
2 + y

2 + z
2 and kvk2 = u

2 + v
2 + w

2.
Then the potential function is given by:
(20)

�(r) = �GM

a

✓
1 +

⇣
r

a

⌘2◆�1/2

,

and the density function by:
(21)

⇢(r) =
3M

4⇡a3

✓
1 +

⇣
r

a

⌘2◆�5/2

.

In these formulas, G denotes the constant of gravity, M the total mass and a a length
parameter. In the following simulations, these constants are taken equal to 1.

This distribution function Eq. (19) is compactly supported in velocity but not in
space.

In Fig. 18, we represent this stationary solution in an adaptive grid with a criterion
based on a second-order hierarchical basis decomposition. The maximum level of
refinement corresponds to a 2566 uniform grid (in red).

Fig. 18. The Plummer Model. Left: two-dimensional cut at zero (0, 0, 0, 0, 0, 0) in (x, u)-view
of the Plummer Model. Center: cut of the corresponding adaptive grid. Right: zoom at the center.

We apply the hierarchical basis adaptive scheme to the six-dimensional merging
of two spherical Plummer models. Hence we simulate the ‘collision’ of two halos
which, when separated, form stable systems. We compare the results to the ones
obtained with Gadget, a N-body code extensively used in the literature [49]. Only
the treecode part of this “treePM” algorithm is employed and 50 millions particles
have been used to describe the merger process. We have also considered a softening
length of 6.84e–4. For other specific parameters (time step, accuracy of the relative
cell-opening criterion, etc. . .), we have used the same values as those in [14]. Running

t=0.7 t=15.4

first collision

t=20 t=25

second collision

!32

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 10 20 30 40

N
o
rm

al
iz

ed
 q

u
an

ti
ti

es

Time

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 10 20 30 40

N
o
rm

al
iz

ed
 q

u
an

ti
ti

es

Time

Figure 11: Conservation properties for the gravity test (9). Let picture : present method with kernel ⇤4,2 and 966 grid.
Right picture : multi-resolution method [7]. Magenta curves: total mass; green curves : entropy; blue curves : norm L2.
Quantities are normalized by their initial value.

method, with the 966 resolution and the kernel ⇤4,2 compares with the multi-resolution method of [7]297

and also with the result of the GADGET software using 5 108 particles.298

To investigate whether higher order particle methods could improve these diagnostics, we next299

tested the ⇤8,4 kernel given by formula (6). Figure 10 gives a comparison of the increase in number300

of particles which results from this remeshing formula with that obtained with the previous kernel.301

Figure 13 shows the selected invariants and the kinetic energy when this 8th order method is used.302

With this higher order kernel, the loss in the L
2 norm of f is significantly reduced, in particular in303

the early stage of the simulation, and the method gives an excellent fit with GADGET for the kinetic304

energy. Although with a much lower maximum resolution, it avoids at the late stage of the simulation305

the numerical dissipation of the underlying finite-difference method in the MRA method of [7]. Note306

that an implementation of the method of [7] with a finest level of refinement corresponding to a 2566307

grid instead of 5126 does not give the correct energy profile for the second collision around t = 25 [8].308

The improvement provided by the high order kernel is even clearer on lower resolution simulations.309

Figure 14 shows the result obtained at a coarse resolution corresponding to a 646 grid. The high order310

kernel already provides reasonable results at this low resolution, albeit with a delayed second collision311

and at a lower level, whereas the 4th order kernel in particular totally fails to reproduce the second312

collision in the kinetic energy.313

18

,

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40

K
in

et
ic

 e
n

er
g

y

Time

Figure 12: Kinetic energy for the gravity test (9). Magenta curve : present method with kernel ⇤4,2 and 966 grid; green
curve : mutli-resolution method [7] ; blue curve : GADGET simulation [7].

,

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 10 20 30 40

N
o
rm

al
iz

ed
 q

u
an

ti
ti

es

Time

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40

K
in

et
ic

 e
n
er

g
y

Time

Figure 13: Left picture : same as Figure 11 with kernel ⇤8,4. Right picture : same as Figure 12 with kernel ⇤8,4.

19

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 10 20 30 40

N
o
rm

al
iz

ed
 q

u
an

ti
ti

es

Time

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 10 20 30 40

N
o
rm

al
iz

ed
 q

u
an

ti
ti

es

Time

Figure 11: Conservation properties for the gravity test (9). Let picture : present method with kernel ⇤4,2 and 966 grid.
Right picture : multi-resolution method [7]. Magenta curves: total mass; green curves : entropy; blue curves : norm L2.
Quantities are normalized by their initial value.

method, with the 966 resolution and the kernel ⇤4,2 compares with the multi-resolution method of [7]297

and also with the result of the GADGET software using 5 108 particles.298

To investigate whether higher order particle methods could improve these diagnostics, we next299

tested the ⇤8,4 kernel given by formula (6). Figure 10 gives a comparison of the increase in number300

of particles which results from this remeshing formula with that obtained with the previous kernel.301

Figure 13 shows the selected invariants and the kinetic energy when this 8th order method is used.302

With this higher order kernel, the loss in the L
2 norm of f is significantly reduced, in particular in303

the early stage of the simulation, and the method gives an excellent fit with GADGET for the kinetic304

energy. Although with a much lower maximum resolution, it avoids at the late stage of the simulation305

the numerical dissipation of the underlying finite-difference method in the MRA method of [7]. Note306

that an implementation of the method of [7] with a finest level of refinement corresponding to a 2566307

grid instead of 5126 does not give the correct energy profile for the second collision around t = 25 [8].308

The improvement provided by the high order kernel is even clearer on lower resolution simulations.309

Figure 14 shows the result obtained at a coarse resolution corresponding to a 646 grid. The high order310

kernel already provides reasonable results at this low resolution, albeit with a delayed second collision311

and at a lower level, whereas the 4th order kernel in particular totally fails to reproduce the second312

collision in the kinetic energy.313

18

In that example, using a higher order SL particle method can be useful

MRA 326-51264th order SL method, 966 8th SL method, 966

mass
L2 norm

entropy

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40

N
o
rm

a
li

z
e
d
 L

2
 n

o
rm

 o
f

f

Time

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40

K
in

et
ic

 e
n
er

g
y

Time

Figure 14: Comparaison of the methods using ⇤4,2 (magenta curves) and ⇤8,4 (green curves) kernels on a 646 grid. Left
picture : L2 norm of f ; right picture : kinetic energy (blue curve is the reference GADGET result).

The satisfactory behavior of semi-Lagrangian particle methods to reproduce energy profiles and314

conserve invariants with affordable resolution should however not hide the fact that this resolution is not315

sufficient if one desires to obtain accurate local values of the distribution function. The comparison with316

the results obtained in multi-level method of [7] in Figure15 shows that the 966 equivalent resolution317

has difficulties to represent accurately the local values of the distribution function beyond time t = 16.318

Another caveat concerning the present method is that, as already mentioned, it does not preserve the319

positivity of the distribution function (note however that density values always remain positive). This320

difficulty, also present in the multi-resolution calculations in [7], is inherently linked to the use of high321

order (and thus non positive) interpolation kernel. It is possible to derive semi-Lagrangian methods322

with TVD limiters [14], but in the present case these methods proved to be over dissipative. Deriving323

along the same lines Weno type remeshing formulas is certainly possible but has not yet been tried. It324

could be fruitful in the present applications.325

We now come to the computational complexity of the method. Table 1 compares the computational326

cost of the present method, with the two kernels used in our simulations, to those of the multi-resolution327

and GADGET simulations reported in [7].328

One can first observe that the ratio in CPU times between semi-Lagrangian particle methods based329

on the ⇤4,2 and ⇤8,4 kernels matches pretty well the ratio between the size of their stencils (6 points vs330

10 points). This indirectly confirms that using 3D tensor product formulas instead of splitting based331

20

more visible with L2 norm at lower (646) resolution

8th order SL

4th order SL

!33

 0

 5x10
7

 1x10
8

 1.5x10
8

 2x10
8

 2.5x10
8

 0 10 20 30 40

N
u

m
b

er
 o

f
p
ar

ti
cl

es

Time

Figure 10: Number of particles for the initial condition (9) and an underlying grid of 966 points with 4th and 8th order
methods. Magenta curve : kernel ⇤4,2; green curve : kernel ⇤8,4.

properties, we found it necessary to decrease the threshold value to 10�6, and therefore increase the282

number of particles.283

Like in the previous case, we set the time-step value to �t = 0.4 for all our simulations. Figure 10284

shows the number of particles as time goes on with the semi-Lagrangian particle method using the285

kernel ⇤4,2 and an underlying grid of 966 points. In that case the CFL number corresponding to our286

time-step and the maximum velocity value on particles is around 6. For comparison, the multilevel287

method of [7] with equivalent resolutions between 326 and 5126 used a maximum of about 5 109 grid288

points in the same time interval and a time step varying between 1.2 10�2 and 3 10�2. The increase in289

the number of particles, which contrasts with what was observed in the previous section, results from290

the need to resolve small scales produced by the dynamics but also spurious oscillations created by291

particle remeshing. This simulation used about 24 Go of RAM memory.292

In Figure 11 we check the conservation of mass, entropy and L
2 norm of f compared to the multi-293

resolution method of [7]. One can see that, except for the total mass, the invariants produced by the294

particle method rapidly show some discrepancy, in particular for the L
2 norm of f . This is confirmed295

by the time history of the kinetic energy Ek = 1/2
R
f(⌅,) | |2 d⌅ d . Figure 12 shows how our296

17

8th order SL

4th order SL

number of particles for SL methods on 966 grid

For comparison the 326-5126 MR method of Deiraz-Peirani used up to 5 109 active grid points

!34

Comparisons of kinetic energy :

SL particles vs MRA vs reference grid-free particles (code GADGET)

using 500 M particles (fixed number)

,

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40

K
in

et
ic

 e
n

er
g
y

Time

Figure 12: Kinetic energy for the gravity test (9). Magenta curve : present method with kernel ⇤4,2 and 966 grid; green
curve : mutli-resolution method [7] ; blue curve : GADGET simulation [7].

,

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 10 20 30 40

N
o
rm

al
iz

ed
 q

u
an

ti
ti

es

Time

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40

K
in

et
ic

 e
n
er

g
y

Time

Figure 13: Left picture : same as Figure 11 with kernel ⇤8,4. Right picture : same as Figure 12 with kernel ⇤8,4.

19

MRA
SL particles
Reference

1st collision 2nd collision

!35

Conclusion for this case :

-as in the plasma case for a SL particle methods using roughly the same number of

particles on a uniform grid, profiles of invariants and kinetic energy are similar to

Eulerian MRA code (with less numerical dissipation at late times)

-results compare well with grid-free particle code using roughly same number of particles

So what ?

!36

Cost ?

4th order
SL PM

8th order
SL PM Wavelet MRA [7] GADGET [7]

Effective
grid resolution 96 96 32 to 512 N.A.

Maximum number
of active

grid-points /
particles

1.8 108 2.5 108 5 109 5 108

Number of
time-steps 100 100 1349 N.A.

Wall clock CPU
time 3.5 hours 5.8 hours 120 days 1 week

Hardware 1 Intel Xeon
E5-2640 2.5 GHz

1 Intel Xeon
E5-2640 2.5 GHz

32 Intel Xeon
X5650 2.66GHz 500 cores

Table 1: CPU times for the present method, the multi-resolution method [7] and the GADGET software.

22

!37

The dark side :

• only very under-resolved simulations

(can be seen on cuts of f)

• bounds of f ok for plasma case

but (very) bad in astro case!

Figure 15: Cuts in the plane (z, w) for the gravity test. Left column : present method with 966 resolution and ⇤8,4

kernel; right column : [7]. From top to bottom, times are 6, 12, 16 and 20.

21

SL particles MRA

Figure 16: Computational cost of the various stages of the semi-Lagrangian method for the 6D gravitational test.

formulas would significantly increase the computational cost of these methods. As already noted, the332

large CPU time required in the GADGET simulation results from the need to consider blobs containing333

many particles in the field calculation. We believe that the significant speed-up provided by the particle334

method compared to the multi-resolution method in [7] is not only due to a larger time step and a335

smaller number of particles, but also to its algorithmic simplicity. It is actually interesting to note that,336

assuming enough memory to run the particle method on an underlying uniform 5126 grid, which is the337

maximum resolution in [7], and a perfect scaling of the CPU time, since in the particle method the338

time-step is independent of the spatial resolution the 4th order method would require about 3350 days339

on a single core, which compares well with the 120 days on 32 cores in [7]. The main advantage of the340

multi-resolution approach seems to be in the memory requirement (the high resolution simulation in341

[7] only requires 512 Go while we already need 24 Go). One can conclude that the localization property342

of semi-Lagrangian particle methods combined with their accuracy and algorithmic simplicity make343

them suitable for large scale computations even when used with uniform grids.344

The breakdown of the computational time in the main stages of the algorithm is given in Figure 16.345

It shows the same trends as in the previous 4D case, with however a reduced contribution of the link-list346

algorithm, due to the fact that this part of the method does not increase with the dimension of the347

problem, and an increased contribution of the assignment stages at the end of the remeshing steps.348

23

breakdown of main

steps of SL algorithm

!38

Conclusion :

There is room for simple methods on single cores even for complex problems

Combining SL particles with wavelets (already done for Navier-Stokes, Bergdorf et al
SIAM MMS 2006) should be a killer

!39

At each time-step, wavelet-based MRA of (grid) quantities, based on interpolating wavelets :

982 MICHAEL BERGDORF AND PETROS KOUMOUTSAKOS

results in a time step bound of

δt < C∥∇ ⊗ u∥−1
∞(2.6)

or LCFL < C, where LCFL ≡ δt ∥∇ ⊗ u∥∞.
The inherent adaptation of particle methods to the flow map can lead to an

irregular distribution of particles and to the loss of convergence, as the function ap-
proximation (2.2) ceases to be well sampled. It is therefore necessary to periodically
regularize the particle locations by “remeshing” them onto regular positions [11, 23].
This redistribution is in general accomplished by interpolating particle values onto a
regular grid where a new set of particles is created with positions given by the grid
locations. Because our kernel ζ is interpolating, remeshing is implemented by directly
evaluating the function q on grid locations after each time step:

Qnew
i = hd

∑

p

Qpζ
h(xnew

i − xp),(2.7)

where xnew
i = ih lie on the grid nodes.

In this work we introduce the function M ′′′
6 , which is interpolating, of order six,

and in C2(R):

M ′′′
6 (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1
88 (|x|− 1)(60 |x|4 − 87 |x|3 − 87 |x|2 + 88 |x| + 88), |x| < 1,

1
176 (|x|− 1)(|x|− 2)(60 |x|3 − 261 |x|2 + 257 |x| + 68), 1 ≤ |x| < 2,

− 3
176 (|x|− 2)(4 |x|2 − 17 |x| + 12)(|x|− 3)2, 2 ≤ |x| < 3,

0, |x| ≥ 3.

(2.8)

We chose the particle kernel ζ as the d-dimensional tensor product of (2.8). The M ′′′
6

is of higher order than the M ′
4 function [11] often used in the context of remeshing,

and it introduces less spurious small scales. The improved accuracy comes at the
expense of a larger support (supp): supp(M ′

4) = 4 vs. supp(M ′′′
6) = 6.

3. Wavelet-based adaptation for PM techniques. In the present framework
we implement tensor-product wavelets ψl,µ and scaling functions ϕl on a sequence of
L + 1 dyadically refined grids with mesh spacings {hl}Ll=0 = {h0 2−l}Ll=0 and grid
points k ∈ {Kl}Ll=0. The scaling functions and wavelets are related as

ϕl
j =

∑

k

H l
j,k ϕl+1

k , ψl,µ
j =

∑

k

Gl,µ
j,k ϕl+1

k ,(3.1)

where µ = 1, . . . , 2d − 1. The discrete filters H l
j,k and Gl,µ

j,k depend on the specific
choice of wavelets employed. Using these bases a function q(x) is expressed as

q(x) =
∑

k∈K0

c0k ϕ0
k(x) +

L−1∑

l=0

∑

k∈Kl

2d−1∑

µ=1

dl,µk ψl,µ
k (x).(3.2)

The scaling coefficients clk and detail coefficients dl,µk can be efficiently computed
using a fast wavelet transform. In areas where the function q(x) is smooth the detail
coefficients of fine levels l will tend to be small, and a compressed representation

982 MICHAEL BERGDORF AND PETROS KOUMOUTSAKOS

results in a time step bound of

δt < C∥∇ ⊗ u∥−1
∞(2.6)

or LCFL < C, where LCFL ≡ δt ∥∇ ⊗ u∥∞.
The inherent adaptation of particle methods to the flow map can lead to an

irregular distribution of particles and to the loss of convergence, as the function ap-
proximation (2.2) ceases to be well sampled. It is therefore necessary to periodically
regularize the particle locations by “remeshing” them onto regular positions [11, 23].
This redistribution is in general accomplished by interpolating particle values onto a
regular grid where a new set of particles is created with positions given by the grid
locations. Because our kernel ζ is interpolating, remeshing is implemented by directly
evaluating the function q on grid locations after each time step:

Qnew
i = hd

∑

p

Qpζ
h(xnew

i − xp),(2.7)

where xnew
i = ih lie on the grid nodes.

In this work we introduce the function M ′′′
6 , which is interpolating, of order six,

and in C2(R):

M ′′′
6 (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1
88 (|x|− 1)(60 |x|4 − 87 |x|3 − 87 |x|2 + 88 |x| + 88), |x| < 1,

1
176 (|x|− 1)(|x|− 2)(60 |x|3 − 261 |x|2 + 257 |x| + 68), 1 ≤ |x| < 2,

− 3
176 (|x|− 2)(4 |x|2 − 17 |x| + 12)(|x|− 3)2, 2 ≤ |x| < 3,

0, |x| ≥ 3.

(2.8)

We chose the particle kernel ζ as the d-dimensional tensor product of (2.8). The M ′′′
6

is of higher order than the M ′
4 function [11] often used in the context of remeshing,

and it introduces less spurious small scales. The improved accuracy comes at the
expense of a larger support (supp): supp(M ′

4) = 4 vs. supp(M ′′′
6) = 6.

3. Wavelet-based adaptation for PM techniques. In the present framework
we implement tensor-product wavelets ψl,µ and scaling functions ϕl on a sequence of
L + 1 dyadically refined grids with mesh spacings {hl}Ll=0 = {h0 2−l}Ll=0 and grid
points k ∈ {Kl}Ll=0. The scaling functions and wavelets are related as

ϕl
j =

∑

k

H l
j,k ϕl+1

k , ψl,µ
j =

∑

k

Gl,µ
j,k ϕl+1

k ,(3.1)

where µ = 1, . . . , 2d − 1. The discrete filters H l
j,k and Gl,µ

j,k depend on the specific
choice of wavelets employed. Using these bases a function q(x) is expressed as

q(x) =
∑

k∈K0

c0k ϕ0
k(x) +

L−1∑

l=0

∑

k∈Kl

2d−1∑

µ=1

dl,µk ψl,µ
k (x).(3.2)

The scaling coefficients clk and detail coefficients dl,µk can be efficiently computed
using a fast wavelet transform. In areas where the function q(x) is smooth the detail
coefficients of fine levels l will tend to be small, and a compressed representation

where d is the dimension and scaling functions and wavelets are recursively given by filter
operations

Wavelet-based multi-resolution particle methods (Bergdorf & Koumoutsakos, 2006)

!40

Nested grids and grid adaptation based on thresholding detail coefficient
 (Liandrat & Tchamitchian, 1990, Vasilyev 2003)

Particle method advects/remeshes scale solution at the successive scales, level by level,
then add up results to reconstruct solution and perform MRA for next iteration

984 MICHAEL BERGDORF AND PETROS KOUMOUTSAKOS

MRA

K>(t + 1
2δt)

create
particles

K>(t)
MRA

advect advect

remesh
particles

K>(t + δt)

 time

grid

particles

M → M

P → M M → P

Fig. 4.1. Particles are created on the adapted grid K>(t) and advected. In the context of a
two-step ODE integration scheme, the particle function representation is evaluated (P → M) on an
intermediate grid K>(t + 1

2 δt), and the right-hand sides that are evaluated on this grid (M → M)
are interpolated back onto the particles (M → P). At the end of the time step the particles are
remeshed onto a mesh K>(t + δt) on which the next MRA is performed.

around Kl
>. Values of these buffer grid points are interpolated from coarser levels,

which is always possible due to the nestedness that we have ascertained earlier.
For P → M interpolation the situation looks different. Particles reside on differ-

ent levels of refinement. When evaluating the particle function representation on a
grid point i, we must therefore make sure that there are particles everywhere in the
support of the interpolant ζh(· −i). We will now present two ways of dealing with
this requirement and highlight their close relation to the convection of small-scale
information.

4.2. P → M: The “Eulerian” approach. This approach can be seen as a
simplified version of a multilevel interpolation procedure that we have introduced in [2]
in the context of an AMR-based particle method. The procedure works as follows (see
Figure 4.2):

(a) We start with a set of activated grid points {Kl
>}Ll=0 selected by the adapta-

tion procedure (3.4).
(b) We then expand this set by ⌈CFL⌉ grid points on each level creating an

extended set Kl
>,ext ≡ Kl

> ∪ Kl
>,CFL; this extension will serve to capture

level l-scale information that is convected out of Kl
>. Around this set we

create a buffer band Bl. We will derive the required size of Bl below.
(c) Now we create particles on grid points k ∈ Bl ∪K>,ext and convect them.
(d) Particle quantities are interpolated onto the grid points in K>,ext.

Fig. 4.2. The “Eulerian” way: (a) Active grid points Kl
> are selected by MRA; (b) Kl

> is

extended by Kl
>,CFL to account for the convection of small scales, a buffer Bl is added, and particles

are created; (c) particles are convected; (d) particles are interpolated onto grid points k ∈ Kl
>,ext.

Nested grids, for wavelet coefficient above given threshold :

An additional buffer is created around particles activated at level 𝑙, with values obtained by
interpolation form level 𝑙-1, to allow consistent remeshing

A LAGRANGIAN PARTICLE-WAVELET METHOD 985

Fig. 4.3. The “Lagrangian” way: (a) Active grid points Kl
> are selected by MRA; (b) Kl

>

is extended by a buffer Bl, an indicator (4.2) is assigned, and particles are created; (c) particles
are convected—they carry the indicator function values alongside; (d) particle quantities and the
indicator function are interpolated onto the grid, and a new set Kl

> is obtained as {k | χl
k > 0 }.

In order to have a sufficient number of particles in the support of the interpolation
kernel, the Bl must be chosen as

Bl =
{
k′

∣∣∣ min
k∈Kl

>,ext

|k′ − k| ≤ ⌈ 1
2 supp(ζ) + CFL⌉

}
.(4.1)

This approach bears two disadvantages: first, it requires the extension of the
set of active grid points to capture convected small scales and, second, the size of
both the extension and the buffer band depend on the CFL number. For particle
methods, where situations with CFL ≫ 1 are possible, this can severely detract from
the efficiency of the method.

4.3. P → M: The “Lagrangian” approach. The second approach inherits
from the Lagrangian character of the underlying particle method (see Figure 4.3):

(a) We again start from the set of active grid points {Kl
>}Ll=0 selected by the

preceding MRA.
(b) Around this set we create a buffer band Bl on each level. Additionally, we

introduce an indicator function χl defined as

χl
k =

{
1, k ∈ Kl

>,

0, k ∈ Bl.
(4.2)

(c) We convect the particles, now carrying the particle quantities and alongside
the indicator function χl.

(d) Particle quantities and the indicator function are interpolated onto the under-
lying grid points and grid points on which the interpolated indicator function
χ̃l

k > 0 are selected1 to constitute the new set Kl
>.

In order to have a sufficient number of particles in the support of the interpolation
kernel, the Bl must be chosen as

Bl =
{
k′

∣∣∣ min
k∈Kl

>

|k′ − k| ≤ ⌈ 1
2 supp(ζ) + LCFL⌉

}
,(4.3)

where the addition of LCFL accounts for the effects of deformation as illustrated in
Figure 4.4. Using this technique, the scale distribution {Kl

>}Ll=0 is naturally convected

1Another possibility is to set χl
k = 1 for all particles. After remeshing, one then selects the new

Kl
> as {k ∈ Kl |χl

k > 1− εPM}, where εPM represents the tolerance for the error introduced by the
interpolation.

Finally, like for grid-based methods, need to allow levels 𝑙+1 to appear from level l during advection step.

!41

Algorithm	for	Cme	advancement	of	parCcles	at	a	given	level	𝑙

select	«ac@ve»		
par@cles		
on	the	grid		
(with	tag=1)	

create	a	buffer	
around	these	
par@cles	
(with	tag=0)

advect	par@cles		
and	tag

remesh	par@cles	
and	tag;		
keep	parCcles		
with	tag	>	0

additional trick : to allow levels ℓ+1 to appear through advection of level ℓ,

remesh level ℓ particles on grid ℓ+1
consistent with lagrangian CFL for time-step

!42

Illustration of MRA SL particles for flow around a wind turbine
(ETH group of Koumoutsakos)

Ingredients : wavelet-based particles for vorticity transport and
Brinkman penalization for non-slip boundary conditions (Angot et al., 1999, Coquerelle & Cottet, 2008)

!43

Extension to Vlasov-Poisson « should » be straightforward

with (at least) two questions :
1) splitting (x,y,z)/(u,v,w) does not allow fine scales to appear dynamically

-> each level passively transported

-> is it a problem ?

-> should one choose other splitting strategy e.g. (x,u)/(y,v)/(z,w) ?

2) kinetic equations vs fluid models : worth it ?

