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A brief and biased history of particle methods for
Vlasov-Poisson and flow simulations

[T S Viasov Incompressible Compressible
flows flows
: Numerical analysis :
80’s (PIC, VIC, ..) Design of SPH
Numerical issues Random init Location processing | Renormalization
Noise / accuracy Npart >> Necell technique h<<eg
Field solve Grid/FFT | ondiree/Blotsavart gy
Fast N-body solvers
90’s Accuracy Particle remeshing
2000 Field solve FFT based
. -High order remeshing |
. -Directional splitting |
2005- Accurac -S.L particles
y  -Multi-resolution
. particles
:-GPU implementation
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Viasov-Maxwell equations

Distribution function for one specie of ions (or electrons) subject to electric and
magnetic fields satisfy

f=f(x,v,t)€[0,1] E=E(xt) B=DB(x1t)

Conservation of charge:

of
ot

F(v - Vyx)f + (E4+vxB)-Vy)f=0

+ Maxwell equations coupling E and B to moments of f (density and charge):
pxt) = [ foevt)de
i(x,t) = q/vf(x,v,t) dv
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Transport equation in phase space (x,v) of dimension up to 6

Advection field given by

v
U = satisfies divy vU = 0
E+v =B |

conservative advection equation for f with velocity field U

-> conservation of all L norms of f
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Computational complexity lies in

- space dimension (up to 6)
- transport equation where one wishes to conserve physical invariants and fe[0,1]

* however support of f occupies in general small part of phase space

These features make natural the use of Lagrangian particle methods :

* replace f by macro-particles in the phase space
- follow them with local velocities

- compute E, B fields in self-consistent way with integral formulas or FFT-based
grid solvers
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Advantages and drawback of Lagrangian (grid-free) particle methods

Pros:

- calculations restricted to the support of f

* norms of distribution function f, bounds of f and entropy ok
- large time-steps (see later)

Cons :
convergence analysis (and practice) shows that it is important to assure Ax « €

( Or Npart >> Ncelis )
= need many particles to limit numerical noise in field evaluation

-> expensive
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Can Eulerian methods provide reasonable alternative in d>1 ?

Yes, If used in multi-resolution modes

Recent work by Deriaz and Periani (SIAM MMS 2018) : multi-resolution method
based on wavelet analysis and third order finite-difference methods
(despite lack of conservativity, numerical diffusion, and CFL conditions)

Enables simulations of 6D gravitational systems with acceptable memory and CPU
times requirements

Suffers difficulties related to finite-difference solvers (in particular numerical diffusion)
Is there room for methods in-between

grid-free particle methods and eulerian methods
with (bonus) multi-resolution capabilities ?
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Semi-Lagrangian methods are good candidates :

- they are well-adapted to advection-dominated problems (low
numerical diffusion, even for low order methods)

 not constrained by CFL conditions
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Classical semi-Lagrangian methods for transport and Vlasov
(Cruseilles et al 2009, Sonnendrucker et al 2010 ..):

N

\\.

Forward Semi-Lagrangian :

push trajectories,

deposit mass though interpolation
reconstruct grid values through B-splines

Backward Semi-Lagrangian :
go backward on trajectories,
interpolate from grid values

fe.xy)=) opS(x—X1(t: X, y1.t"))S(y — Xa (£ %, 1. £"))
k,l
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In (2D) FSL methods, to advance from time step tn to tn+1, the solution is represented on a B-
spline basis :

f(ta X, y) = Zw;z,ls(x = Xl (t’ Xie» Y1, tn))S(y B Xz(t’ Xkes Vi, tn))
k,l

and weights wn+1 at time t"+1 are recovered by solving linear system :

[ Zw TS — xSy — y).

Conservative methods can be constructed along similar lines

Drawbacks:

- cost (linear system)
* memory requirements (like Eulerian methods, need full grids)

* high order ?

So far, used mostly (only ?) for low-dimensional (1+1D) systems

10
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Other approach to Semi-Lagrangian methods: remeshed particle methods

- try to combine natural adaptivity of particles with accuracy of Semi-Lagrangian
methods

- well established for 3D level-set methods and complex flow calculations but (almost)
never used so far for Vlasov-Poisson

Principle:

- initialize particles in support of f and push them with local velocities (like regular
particles)

- remesh at each time-step with high order interpolation formulas

* retain after remeshing only particles with strength above a given cut-off
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Remeshed particle methods

ldea goes back to the 80’s:
Krasny’s 2D vortex sheet, Meiburg’s 3D jets,and Chorin’s and Leonard’s hairpin

removal
Insert fresh particles «in between» old particles when needed

Specific to problems with topology control

More generic approach : remesh particles on regular grids through standard 3D
interpolation formulas.

Criterium for remeshing schemes :
conservation of the moments of the particle distribution:/fdx ; /dex , /x2 fdx ---

Allowed first high resolution DNS of flow past cylinders at high Reynolds numbers
(Koumoutsakos & Leonard, JFM 1995), ... before spectral element calculations
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Traditionally, work with tensor products of ID formulas

Typical interpolation formulas :

econservation of 3 moments (third order truncation error) use 3 points in
each direction

smooth version uses an additional grid point -> 4 grid points

econservation of 5 moments (5th order truncation error) use 5 points
smooth version spread particle on 6 nearest grid points

*resulting stencils in 3D :27, 64, 125,216 points
if advection of particles is split direction by direction, reduces to one-

dimensional stencils

Until recently particle remeshing was considered as an ad-hoc fix,
and momentum conservation properties as safeguard
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Particle methods with remeshing at every time-step can be viewed and analyzed as
forward semi-lagrangian methods ( C. et al, M2AN 2014)

How they work:

|) particles on a grid
2) push particles with local velocity values
3) remesh particles on the grid, through interpolation

In | D for advection equation 0; +ub, =0

method can be described by the following equations:

"t —
v = iAot =y i | ) i 2
. T
J

where ¢, depend on the time-stepping scheme and I’ is a piecewise polynomial kernel
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I' is defined by regularity and moment properties :

*moment properties : Z kOT(CE K k) =z%,0<a<p z€eR

kcZ
* regularity : [ is of class C" and I' € C™ (]l, Ui 1[) =
* interpolation property : ['(2) = { e O.’
0 otherwise.
4 )

Convergence result (Cottet et al, M2AN 2014) :
1) the spatial order of the method is inf(p,r) 5
\2) stability holds for a large class of kernels under the condition At < HVUHC;}

Remark: At < H?ﬂ’H;} is sometimes called a Lagrangian CFL condition (LCFL) with LCFL 1

If at all times, each cell contains exactly one particle, order = p
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Examples of remeshing kernels (2nd and 6th order)
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Refinement study : case of a rotating patch in an off-center vorticity field

() si NRVAD <N W B
=2 Gl i) sy (7 x) §1n(w y) cos(my) . FN W 5 Wy IRV WS
sin“(7y) sin(w x) cos(w x) T S/ V/ A T \ A VR

0'4_......:....... IS ,. ;
17 SRS\ O\ SOOI RTOTH: 7 << TNV - SPONE S:
V) RS TR SN POUTN FRVURL WP RNt S SO

DA |- o ee e Eeametad coma s s mman e Susemmae § o mmmed e s mmabien e mme e e dmme e e o

0

1 I 1 1 1 1 1 I I )
0 0.1 02 03 04 05 06 07 08 09 1

——

Kernel Order of convergence

A271 1.87

g 0,01 |

: Ay o 3.17
: A6 5.92
&

g

: .

E 00001 _

16‘06 | | | | | | | | |
0,001 0,01

DX

Error in maximum norm for different kernels (order 1 2,2 4 and 4_6)

LABORATOIRE 17
JEAN KUNTZMANN



3D case : comparisons with Weno and VOF methods

Implementation of grid-based methods
with particles for corrections

Enright et al, JCP 2002 Vincent et al, JCP 2010 N=100, CFL=8 N=160, CFL=12
3r order Weno VOF CPU .Time ]
N=100 + 64 ppc N=64 + 9 ppc 1 s per iteration

CFL=1 (?) CFL=0.1 remeshed particle method, 4th order
CPU =22 remeshing,

2nd order in time
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N = 256 and CF'L = 30. Left picture: kernel Ag 1 ; right picture: kernel Ag 4.
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Semi-Lagrangian (or remeshed) particle methods for Viasov-Poisson

First attempt: Myers, Colella, Van Straalen (SIAM J. Sci. Comput., 2017) :

« Successful application to 2+2D Landau damping

« Use of 2nd and 4th order kernels

- roadblock for higher dimension : need a full grid to remesh particles

- still n>N, and remeshing frequency to adjust

roadblock can be removed by using link-lists of particles
In lower dimensional spaces (C., JCP 2018)
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2D example : particles in (x,y) space, directional splitting of advection

1st sweep : horizontal advection

6
& =5, n()=1
4 7 8
e & — =4, n()=3
=3, n(l)=0
2
=2, n(l)=1
1 3 5
& =1, n(l)=3
ind(1)=1 ind(2)=3 ind(3)=5

sort particles by horizontal lines :
each particle on the line gets an address in the original list
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line I=1 /\ /\ /\

ALY

-> i=l:n(l)=3,
push
xp(I(i))=xp(l(i))+dt * vx(1)

remesh
i=int(xp):int(xp)+1, ug(i)=ug(i)+up*r(xp-i*dh) (for a 2 points formula)

and reinitialize particles on this line where needed :
-> j=1:nx, if ug(i) > threshold,
npart=npart+1, xp(npart)=i*dh, up(npart)=ug(i)

Good news : Only 1d array for values on the grid !
Bad news : Need to label lines in a 6D space : 5d arrays
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Good compromise between sizes of label and grid value arrays :

sort particles in 3D spaces : (X,Y,z) spaces then (u,v,w) spaces

Remarks :

- accumulation of charges to compute density in a given (x,y,z) plane and calculation of
field are done simultaneously with particle sorting

- push-remesh line by line can still be (and is) done inside each 3D space to reduce

computational cost of high order remeshing kernels. Important for high order (large
stencils) kernels.

« uniform velocity in each line -> order of method given by nhumber of moments of cut-off
(no need of regularity)

Memory requirements for 6D algorithm with Np particles :

« 7 main arrays of size Np for positions, velocity, distribution function
7 auxiliary arrays for same quantities

- 2 arrays of size Np to store particles addresses in link-list algorithm
- several 3D arrays for E, density, link-list
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Goal of simulations :
test accuracy / efficiency of SL particles on uniform grids
against MRA Eulerian methods and regular particle methods

Example 1: 2+2D plasma two beams instability, SL with 4th order kernel
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fO(xayaua U) iy, m &P (_ ]
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10 107
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MRA grid (Deriaz-Periani) 324-2564 number of particles on a 1284 grid
LABORATOIRE 24

JEAN KUNTZMANN



Qualitative comparison : cuts in (x,u) plane at t=12
(time of peak potential energy)

SL isolines of f MRA isolines of f MRA grid
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Conservation properties :

total density, L2 norm, entropy and total energy Iv2f dxdv + IEZ dx

Normalized quantities
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SL particle method grid with 1284 grid
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Time Time

MRA grid (Deriaz-Periani) 324-2564
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1 SL particles with 644

o i f\ |
5 h ) N[\ﬂ\ J\/\/ ‘\A — SL particles with 1284
2 / \],14
% 80
E 60 MRA
40 \
20 - \
. \J\] l l l l

Time

Comparison of potential energy _[EZ obtained by MRA and SL particles
at two resolutions
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First conclusions on this case :

- Accuracy of SL on uniform grids comparable to finite-difference MRA at higher local
resolution

- Diffusive effects visible on Eulerian scheme, even at high (local) resolution,
not seen on SL methods
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Electric energy

Comparison with pure PIC method on 2+2D Landau Damping

il
fo(iC,y,u,U) = % eXp

(—u2 — 712) (14 0.01 cos g cos %)
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Simulated, 1 billion particles

Classical PIC on 2562 cells,
with varying particle/cell ratio
(from Y. Barsamian PhD thesis)
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Good fit for longer times with higher resolution for SL particles
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SL particles on 324 grid
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Electric energy
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Example 2 : 6D gravitational system /(. ||v])) =

interaction of 2 Kipling spheres

density isosurfaces

|

o 20+ ) )

7/2

cuts of initial f-profile

t=0.7 t.:15.4 n 016 — ‘
first collision
t:20 t:25 0.02 j \
second collision BT o T
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Normalized quantities

Normalized L2 norm of f

In that example, using a higher order SL particle method can be useful

4th order SL method, 966
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Normalized quantities
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2.5x108

2l 8th order SL

1.5x10% -

1x108 |

Number of particles

4th order SL

5x10 |

| | |
0 10 20 30 40
Time

number of particles for SL methods on 966 grid

For comparison the 326-5126 MR method of Deiraz-Peirani used up to 5 10° active grid points
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Comparisons of kinetic energy :
SL particles vs MRA vs reference grid-free particles (code GADGET)
using 500 M particles (fixed number)

0.9

Kinetic energy

/"\ Reference

| | |
0 10 20 | 30 40
Time

0.3

1st collision 2nd collision
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Conclusion for this case:

-as in the plasma case for a SL particle methods using roughly the same number of
particles on a uniform grid, profiles of invariants and kinetic energy are similar to
Eulerian MRA code (with less numerical dissipation at late times)

-results compare well with grid-free particle code using roughly same number of particles

So what ?
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4th order Sth order
SL PM ST PM Wavelet MRA [7] | GADGET [7]
Cost ? ST 96 96 32 to 512 N.A.
grid resolution
Maximum number
grid-points /

particles

Number of 100

time-steps
Wall cl-ock CPU 3 5 hours

time
Hardware 1 Intel Xeon

E5-2640 2.5 GHz
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SL particles MRA

breakdown of main
steps of SL algorithm

The dark side :

* only very under-resolved simulations
(can be seen on cuts of f)

* bounds of f ok for plasma case
but (very) bad in astro case!
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Conclusion :
There is room for simple methods on single cores even for complex problems

Combining SL particles with wavelets (already done for Navier-Stokes, Bergdorf et al
SIAM MMS 2006) should be a killer
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Wavelet-based multi-resolution particle methods (Bergdorf & Koumoutsakos, 2006)

At each time-step, wavelet-based MRA of (grid) quantities, based on interpolating wavelets :

g ) o¢ )
I L,
q(x) = E ch Pr () + 54 SJ E :dku¢ku(w)
kec1Co =0 kel pu=1

where d is the dimension and scaling functions and wavelets are recursively given by filter
operations

[ [ [+1 Ly Ly 141
Pj = E ,Hak Pr vt = ZGj,k Pl
k
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Nested grids and grid adaptation based on thresholding detail coefficient
(Liandrat & Tchamitchian, 1990, Vasilyev 2003)

Particle method advects/remeshes scale solution at the successive scales, level by level,
then add up results to reconstruct solution and perform MRA for next iteration

Nested grids, for wavelet coefficient above given threshold : {Kl> }ZL:O

An additional buffer is created around particles activated at level [, with values obtained by
interpolation form level [-1, to allow consistent remeshing

B' = {k’ ‘ min |k' — k| < [% supp(¢) +LCFL]}
kekCh

Finally, like for grid-based methods, need to allow levels [+| to appear from level | during advection
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Algorithm for time advancement of particles at a given level [

l
oK.
O B
a b C d
select «active create a buffer advect particles remesh particles
particles arou.nd these and tag and tag;
on the grid (pa.rflhc!ces 0) keep particles
with tag= ;
(with tag=1) 5 withtag>0

additional trick : to allow levels £+1 to appear through advection of level £,
remesh level £ particles on grid £+1
consistent with lagrangian CFL for time-step
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lllustration of MRA SL particles for flow around a wind turbine
(ETH group of Koumoutsakos)

Ingredients : wavelet-based particles for vorticity transport and
Brinkman penalization for non-slip boundary conditions (Angot et al., 1999, Coquerelle & Cottet, 2008)
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Extension to Vlasov-Poisson « should » be straightforward

with (at least) two questions :

1) splitting (x,Yy,2)/(u,v,w) does not allow fine scales to appear dynamically
-> each level passively transported

-> is it a problem ?

-> should one choose other splitting strategy e.g. (x,u)/(y,v)/(z,w) ?

2) kinetic equations vs fluid models : worth it ?
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