The use of optimal control theory for equilibrium identification and optimization of plasma scenarios

Jacques Blum in collaboration with C. Boulbe, B. Faugeras and H. Heumann

> Université de Nice Sophia Antipolis Laboratoire J.-A. Dieudonné Nice, France jacques.blum@unice.fr

Journée Méthodes Numériques pour les Plasmas, Marseille

JB ((Université de Nice))

Optimal control

Nov 2018 1 / 34

E

590

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Outline

Inverse problems

- 1 plasma boundary identification
- 2 full equilibrium reconstruction
- Optimization of plasma scenarios
- **③** Perspective : coupling with transport

IR ((Université de Nice)	۱.
50		

Optimal control

Nov 2018 2 / 34

E

▲□▶ ▲□▶ ▲三▶ ▲三▶

590

Equilibrium identification. Introduction

- Equilibrium of a plasma : a free boundary problem
- Equilibrium equation inside the plasma, in an axisymmetric configuration : Grad-Shafranov equation
- Right-hand side of this equation is a non-linear source : the toroidal component of the plasma current density

Goal

Perform the reconstruction of 2D equilibrium and the identification of the current density in real-time.

JB (Université de Nice)

Optimal control

< □ ▶

< 4 ▶

Nov 2018 3 / 34

596

Mathematical modelling of the equilibrium

Grad-Shafranov Equation

- 3D MHD equilibrium + axisymmetric assump. : Grad-Shafranov eqn.
- 2D problem. State variable $\psi(r,z)$ poloidal magnetic flux

In the plasma

$$-\Delta^*\psi = rp'(\psi) + rac{1}{\mu_0 r}(ff')(\psi)$$

with

$$\Delta^* = \frac{\partial}{\partial r} \left(\frac{1}{\mu_0 r} \frac{\partial}{\partial r}\right) + \frac{\partial}{\partial z} \left(\frac{1}{\mu_0 r} \frac{\partial}{\partial z}\right)$$

In the vacuum

$$-\Delta^*\psi=0$$

	< [- ▶ ∢⊡ ▶	• ≣ • •	≣ ► 🔅		~ ~ ~
JB (Université de Nice)	Optimal control			Nov 20	18	4 / 34

Definition of the free plasma boundary

Two cases

- outermost flux line inside the limiter (left)
- magnetic separatrix : hyperbolic line with an X-point (right)

JB (Université de Nice)

Optimal control

Nov 2018 5 / 34

E

Э

•

▲□▶ ▲□▶ ▲≧▶

590

VacTH

- Solves the external problem. ψ outside the plasma.
- Decomposition of ψ in toroidal harmonics
- Interpolation of discrete magnetic measurements on a fixed contour Γ
 - Boundary conditions for equilibrium reconstruction
 - Generic. Use on different Tokamaks. IMAS.
- Extrapolation for plasma boundary reconstruction (WEST)

∢ @ ▶ ∢ ≧ ▶

IR (Université de Nice)	IR (Université de Nice)	
IR (Université de Nice)	IR (Université de Nice)	
	IR (Université de Nice)	
		(Lipuvorcità do Nuco)

Optimal control

< □ ▶

Nov 2018 6 / 34

크

590

Decomposition of ψ in any annular domain surrounding the plasma

$$\psi = \psi_{\mathcal{C}} + \psi_{\mathcal{TH}}$$

- ψ_{C} contribution of PFcoils. Green functions.
- ψ_{TH} satisfies

$$\Delta^*\psi_{TH}=0$$

and can be uniquely decomposed in a series of toroidal harmonics

$$\begin{cases} \psi_{TH} = \psi_{ext} + \psi_{int} \\ \psi_{ext} = \frac{r_0 \sinh \zeta}{\sqrt{\cosh \zeta - \cos \eta}} [\sum_{n=0}^{\infty} (a_n^e \cos(n\eta) + b_n^e \sin(n\eta)) Q_{n-1/2}^1 (\cosh \zeta)] \\ \psi_{int} = \frac{r_0 \sinh \zeta}{\sqrt{\cosh \zeta - \cos \eta}} [\sum_{n=0}^{\infty} (a_n^i \cos(n\eta) + b_n^i \sin(n\eta)) P_{n-1/2}^1 (\cosh \zeta)] \\ \int (\frac{1}{\sqrt{\cosh \zeta}} \int \frac{1}{r_0} \int \frac$$

Plasma boundary identification by an optimal control method

$$J(\mathbf{v}) = \frac{1}{2} \int_{\Omega} \frac{1}{r} ||\nabla \psi_D(\mathbf{v}, f) - \nabla \psi_N(\mathbf{v}, g)||^2 dx + \frac{\varepsilon}{2} \int_{\Omega} \frac{1}{r} ||\nabla \psi_D(\mathbf{v}, f)||^2 dx$$

$$J(v) = \frac{1}{2}((1+\varepsilon)s_D(v,v) - s_N(v,v)) - l(v) + c$$

Euler equation : $(J'(u), v) = (1 + \varepsilon)s_D(u, v) - s_N(u, v) - I(v) = 0$ $\forall v$ JB (Université de Nice)Optimal controlNov 20188 / 34

VacTH algorithm and code

Initialization

- Geom. data : current filament position (ψ_{C}), flux loops, B probes
- Choice of fixed contour Γ
- Number of harmonics n^e , n^i , ...

One equilibrium. Input data : PF coils currents I_{C_i} , magnetics ψ_i , B_i

- Compute flux $\psi_{C,i}$ and field $B_{C,i}$ generated by the PF coils and substract it from measurements
- Find optimal toroidal harmonics expansion coefficients $(a_{0:n_e}^e, b_{1:n_e}^e, a_{0:n_i}^i, b_{1:n_i}^i) = u_{opt} = \operatorname{argmin} J(u)$ with $J(u) = J_{obs}(u) + \varepsilon R(u)$
 - J_{obs} distance to measurements

regularization
$$R(u) = \int_{C_{\zeta_0}} |rac{d^2 \psi_{th}}{ds^2}|^2 ds$$

 C_{ζ_0} circle of constant ζ coordinate surrounding the pole of the coordinates system.

< 一型

< <p>Image: Image: Imag

- $\psi = \psi_{C} + \psi_{TH}(u_{opt}).$
 - interpolation : evaluate Cauchy conditions on Γ
 - but also extrapolation : X-point, plasma boundary, ...

```
JB (Université de Nice)
```

Optimal <u>control</u>

Nov 2018 10 / 34

Sa

Full equilibrium reconstruction : experimental measurements

• magnetic "measurements" on mesh boundary

$$\psi(M_i) = g_i \text{ and } \frac{1}{r} \frac{\partial \psi}{\partial n}(N_j) = h_j \text{ on } \partial \Omega$$

• interferometry and polarimetry on several chords

$$\int_{C_m} n_e(\psi) dl = \alpha_m, \ \int_{C_m} \frac{n_e(\psi)}{r} \frac{\partial \psi}{\partial n} dl = \beta_m$$

• motional Stark effect

$$f_j(B_r(M_j), B_z(M_j), B_{\phi}(M_j)) = \gamma_j$$

JB (Université de Nice)	Optimal control			Nov 2	2018	11 / 34
	< د	₽ ►	< ≣ >	< ≣ >	臣	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ITER, magnetic sensors and interferometry-polarimetry chords

	< □	< ⊡ >	< ≣ >	•	₽►	1	うくい
JB (Université de Nice)	Optimal control				Nov	2018	12 / 34

Statement of the inverse problem

• State equation

$$\begin{cases} -\Delta^* \psi = \lambda [\frac{r}{R_0} A(\bar{\psi}) + \frac{R_0}{r} B(\bar{\psi})] \mathbf{1}_{\Omega_p(\psi)} & \text{in } \Omega \\ \psi = g & \text{on } \partial\Omega \end{cases}$$

• Least square minimization

$$J(A, B, n_e) = J_0 + K_1 J_1 + K_2 J_2 + J_e$$

with

$$J_{0} = \sum_{j} \left(\frac{1}{r} \frac{\partial \psi}{\partial n}(N_{j}) - h_{j}\right)^{2}$$

$$J_{1} = \sum_{i} \left(\int_{C_{i}} \frac{n_{e}}{r} \frac{\partial \psi}{\partial n} dl - \alpha_{i}\right)^{2}$$

$$J_{2} = \sum_{i} \left(\int_{C_{i}} n_{e} dl - \beta_{i}\right)^{2}$$

$$J_{\epsilon} = \epsilon \int_{0}^{1} \left(\frac{\partial^{2} A}{\partial \bar{\psi}^{2}}\right)^{2} d\bar{\psi} + \epsilon \int_{0}^{1} \left(\frac{\partial^{2} B}{\partial \bar{\psi}^{2}}\right)^{2} d\bar{\psi} + \epsilon_{ne} \int_{0}^{1} \left(\frac{\partial^{2} n_{e}}{\partial \bar{\psi}^{2}}\right)^{2} d\bar{\psi}$$

JB (Université de Nice)

Optimal control

Nov 2018 13 / 34

E

▲□▶ ▲□▶ ▲□▶ ▲□▶

590

Numerical method

Finite element resolution

 $\begin{cases} \text{Find } \psi \in H^1 \text{ with } \psi = g \text{ on } \partial\Omega \text{ such that} \\ \forall v \in H^1_0, \int_{\Omega} \frac{1}{\mu_0 r} \nabla \psi \nabla v dx = \int_{\Omega_p} \lambda [\frac{r}{R_0} A(\bar{\psi}) + \frac{R_0}{r} B(\bar{\psi})] v dx \end{cases}$

with

$$A(x) = \sum_{i} a_{i} f_{i}(x), \quad B(\psi) = \sum_{i} b_{i} f_{i}(x), \quad u = (a_{i}, b_{i})$$

Fixed point

$$K\psi = Y(\psi)u + g$$

K modified stiffness matrix, u coefficients of A and B, g Dirichlet BC

Direct solver : $(\psi^n, u) \rightarrow \psi^{n+1}$

$$\psi^{n+1} = K^{-1}[Y(\psi^n)u + g]$$

JB (Université de Nice)

Optimal control

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

うへつ

14 / 34

Nov 2018

Numerical method

Least-square minimization

$$J(u) = \|C(\psi)\psi - d\|^2 + u^T A u$$

- d : experimental measurements
- A : regularization terms

Approximation

$$J(u) = \|C(\psi^{n})\psi - d\|^{2} + u^{T}Au, \text{ with } \psi = K^{-1}[Y(\psi^{n})u + g]$$
$$J(u) = \|C(\psi^{n})K^{-1}Y(\psi^{n})u + C(\psi^{n})K^{-1}g - d\|^{2} + u^{T}Au$$
$$= \|E^{n}u - F^{n}\|^{2} + u^{T}Au$$

Normal equation. Inverse solver : $\psi^n \rightarrow u$

$$(E^{nT}E^n + A)u = E^{nT}F^n$$

JB (Université de Nice)

Optimal control

Nov 2018 15 / 34

크

▲□▶ ▲□▶ ▲□▶ ▲ □▶

5900

Algorithm. EQUINOX

A pulse in real-time :

• Quasi-static approach :

- first guess at time t= equilibrium at time $t-\delta t$
- limited number of fixed-point iterations
- Normal equation : \approx 10 Bspline basis func.
 - ightarrow small pprox 20 imes 20 imes 20 linear system
- Tikhonov regularization parameters unchanged
- K = LU and K^{-1} precomputed and stored once for all
- Expensive operations : update products $C(\psi)K^{-1}$ and $C(\psi)K^{-1}Y(\psi)$

J. Blum, C. Boulbe, B. Faugeras, *Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time*, Journal of Computational Physics, Elsevier, 2012, 231, pp.960-980

JB (Université de Nice)

Optimal contro

Nov 2018 16 / 34

(日本) (日本) (日本)

Sac

Algorithm verification : twin experiments

Method

- Functions A and B given. Generate "measurements" with direct code
- Test the possibility to recover the functions by solving the inverse problem

Noise free experiments. Magnetics only.

- With a well-chosen regularization parameter ε , A and B are well recovered.
- Averaged current density and q profiles are not very sensitive to ε .

Experiments with noise. Magnetics only and mag+polarimetry.

- Averaged current density and q profiles are less sensitive to noise than A and B.
- With polarimetry A and B are better constrained.

JB (Université de Nice)

Optimal control

ov 2018 17 / 34

Noise free twin experiment. Magnetics only. Identified A, B, $r_0 < \frac{j(r, \bar{\psi})}{r} >$ and q for different ε

18 / 34

1% noise twin exp. Mag. and polar. Mean \pm stand. dev. (200 exp.) identified A and B for ε = 0.01, 0.1, 1

JB (Université de Nice)	Optimal control	Nov 2018 20 / 34

Tore Supra - Magnetics and polarimetry

	< د	□ ▶ ∢ 🗗 ▶	< ≣ >	< ≣ >	Ð,	9 Q (P
JB (Université de Nice)	Optimal control			Nov 201	18	21 / 34

JET - Magnetics and polarimetry

JB (Université de Nice)

NICE : N-ewton direct and I-nverse C-omputation for E-quilibrium

- merge in a single performant modern C++ code the numerical methods from
 - VacTH (toroidal harmonics in vacuum)
 - Equinox (equilibrium reconstruction in bounded domain)
 - Cedres++(equilibrium computation in full domain)
- add new numerical methods among which variants of SQP for optimization, and the possibility to use polarimetry with the Stokes model for equilibrium reconstruction
- final aim is to have a unified, complete and modular code for direct and inverse equilibrium computations
- Status :
 - mature for equilibrium reconstruction, direct and inverse static equilibrium, direct evolution
 - used at WEST for equilibirium recontruction
 - tested on TCV, AUG, JET and ITER
 - IMAS compatible

JB (Université de Nice)

Optimal control

Nov 2018 23 / 34

3

《曰》《卽》《臣》《臣》

500

NICE used at WEST for equilibrium reconstruction

Shot 53496 Run 0 Occ 1 User imas_public Machine west

	1 >	< ⊡ >	< ≣	▶ ▲ 重		₹.	うくで
JB (Université de Nice)	Optimal control			N	lov 201	.8	24 / 34

Optimization of plasma scenarios

The inverse stationary problem :

Objective ($N_{\text{desi}} + 1$ points (r_i, z_i) given) and regularization :

$$egin{split} \mathcal{K}(\psi) &:= rac{1}{2} \sum_{i=1}^{N_{ ext{desi}}} ig(\psi(r_i, z_i) - \psi(r_0, z_0)ig)^2 \ \mathcal{R}(I_1, \dots, I_L) &:= \sum_{i=1}^L rac{w_i}{2} I_i^2 \end{split}$$

JB (Université de Nice)

Optimal control

Optimization of plasma scenarios

The inverse stationary problem :

Objective $(N_{\text{desi}} + 1 \text{ points } (r_i, z_i) \text{ given})$ and regularization :

$$egin{aligned} & \mathcal{K}(\psi) := rac{1}{2} \sum_{i=1}^{N_{ ext{desi}}} ig(\psi(\mathit{r}_i, \mathit{z}_i) - \psi(\mathit{r}_0, \mathit{z}_0)ig)^2 \ & \mathcal{R}(\mathit{I}_1, \dots, \mathit{I}_L) := \sum_{i=1}^L rac{w_i}{2} \mathit{I}_i^2 \end{aligned}$$

Optimal Control/Inverse Problem :

$$\begin{split} \min_{\psi, l_1, \dots, l_L} \mathcal{K}(\psi) + \mathcal{R}(l_1, \dots, l_L) \\ \text{subject to} \\ -\nabla \cdot \left(\frac{1}{\mu r} \nabla \psi\right) &= \begin{cases} r S_{p'}(\psi_N) + \frac{1}{\mu_0 r} S_{ff'}(\psi_N) & \text{in } \Omega_p(\psi) , \\ l_i / |\Omega_{\text{coil}_i}| & \text{in } \Omega_{\text{coil}_i} , \\ 0 & \text{elsewhere } , \end{cases} \\ \psi(0, z) &= 0, \quad \lim_{\|(r, z)\| \to +\infty} \psi(r, z) &= 0 , \end{cases} \end{split}$$

 $\Omega_{
m coil}$

core

 $_{
m siv}$

iro

coil

The evolution problem : optimal voltage $\vec{V}(t)$

Objective (evolution of $N_{\text{desi}} + 1$ points (r_i, z_i) given) and regularization :

$$egin{split} &\mathcal{K}(\psi(t)):=rac{1}{2}\int_{0}^{\mathcal{T}}\left(\sum_{i=1}^{N_{ ext{desi}}}\left(\psi(r_{i}(t),z_{i}(t),t)-\psi(r_{0}(t),z_{0}(t),t)
ight)^{2}
ight)dt\,, \ &\mathcal{R}(ec{V}(t)):=\sum_{i=1}^{L}rac{w_{i}}{2}\int_{0}^{\mathcal{T}}V_{i}^{2}(t)dt\,. \end{split}$$

•		ð	1			1	4) Q (?
Optimal control				N	lov 2	2018	2	6 / 34

JB (Université de Nice)

The evolution problem : optimal voltage $\vec{V}(t)$

Objective (evolution of $N_{\text{desi}} + 1$ points (r_i, z_i) given) and regularization :

$$egin{aligned} &\mathcal{K}(\psi(t)) := rac{1}{2} \int_0^T \left(\sum_{i=1}^{N_{ ext{desi}}} \left(\psi(r_i(t), z_i(t), t) - \psi(r_0(t), z_0(t), t)
ight)^2
ight) dt \,, \ &\mathcal{R}(ec{V}(t)) := \sum_{i=1}^L rac{w_i}{2} \int_0^T V_i^2(t) dt \,. \end{aligned}$$

Optimal Control/Inverse Problem :

$$\begin{split} \min_{\psi(t),\vec{V}(t)} & \mathcal{K}(\psi(t)) + \mathcal{R}(\vec{V}(t)) \\ \text{subject to} \\ & -\nabla \cdot \left(\frac{1}{\mu r} \nabla \psi\right) = \begin{cases} r S_{p'}(\psi_{\mathrm{N}},t) + \frac{1}{\mu_{0}r} S_{ff'}(\psi_{\mathrm{N}},t) & \text{in } \Omega_{\mathrm{p}}(\psi), \\ |\Omega_{\mathrm{coil}_{i}}^{-1}| \left(\boldsymbol{S}\vec{V}(t) + \boldsymbol{R}\vec{\Psi}(\partial_{t}\psi)\right)_{i} & \text{in } \Omega_{\mathrm{coil}_{i}}, \\ -\frac{\sigma_{k}}{r} \partial_{t}\psi & \text{in } \Omega_{\mathrm{passive}}, \\ 0 & \text{elsewhere}, \end{cases} \\ \psi(0,z,t) = 0, \quad \lim_{\|(r,z)\| \to +\infty} \psi(r,z,t) = 0, \quad \psi(r,z,0) = \psi_{0}(r,z), \end{split}$$

PDE-constrained optimization with non-linear constraints.

JB	(Université de Nice)	Optimal control	Nov 2018	26 / 34

Weak Formulation, Stationary Problem

Find
$$\psi \in V$$
 such that

$$A(\psi,\xi) - J_{p}(\psi,\xi) + c(\psi,\xi) = \ell(\vec{l},\xi) \quad \forall \xi \in V.$$
with

$$V = \left\{\psi: \Omega \to \mathbb{R}, \int_{\Omega} \psi^{2}r^{-1} dr dz < \infty, \int_{\Omega} |\nabla\psi|^{2}r^{-1} dr dz < \infty\right\},$$

$$A(\psi,\xi) := \int_{\Omega} \frac{1}{\mu r} \nabla \psi \cdot \nabla \xi dr dz, \quad \ell(\vec{l},\xi) := \sum_{i=1}^{N_{coil}} |\Omega_{coil_{i}}|^{-1}\vec{l}_{i} \int_{\Omega_{coil_{i}}} \xi dr dz,$$

$$J_{p}(\psi,\xi) := \int_{\Omega_{p}(\psi)} \left(rS_{p'}(\psi_{N}(\psi)) + \frac{1}{\mu_{0}r}S_{ff'}(\psi_{N}(\psi))\right) \xi dr dz,$$

$$f(\psi,\xi) \approx \int_{\partial\Omega} \xi \partial_{n}\psi dS \text{ for boundary condition at infinity.}$$
The domain Ω is semi-circle with radius ρ .

Sequential quadratic programming method

Minimization problem

$$\min_{\Psi,u} \frac{1}{2} \Psi^{\mathsf{T}} K \Psi + \frac{1}{2} u^{\mathsf{T}} H u \quad \text{s.t.} \quad B(\Psi) = F(u)$$

with $\Psi = (\psi_1, ..., \psi_{n_n odes})^T$ et $u = (u_1, ..., u_N)^T$. u represents the PF currents I_i in the stationary problem and the voltages V_i in the evolutive problem.

Lagrangian

$$L(\Psi, u, p) = \frac{1}{2}\Psi^{\mathsf{T}}K\Psi + \frac{1}{2}u^{\mathsf{T}}Hu + p^{\mathsf{T}}(B(\Psi) - F(u))$$

Stationary point of the Lagrangian

$$egin{array}{rcl} & egin{array}{rcl} & egin{array}{rcl} & eta & eb$$

SQP is equivalent to the resolution of this system by Newton's iterations.

H. Heumann & al., *Quasi-static Free-Boundary Equilibrium of Toroidal Plasma with CEDRES++ : Computational Methods and Applications*, Journal of Plasma Physics, Cambridge University Press (CUP), 2015, pp.35.

590

29 / 34

Control of Transient Plasma Equilibrium, WEST

Objective function (desired shape at final time T) :

$$\mathcal{K}(\psi(t)) := rac{1}{2} \left(\sum_{i=1}^{N_{\mathrm{desi}}} \left(\psi(r_i(T), z_i(T), T) - \psi(r_0(T), z_0(T), T) \right)^2
ight),$$

Go from green to yellow desired boundary in passing red, blue and cyan!

Control of Transient Plasma Equilibrium, WEST

Objective (desired shape at final time T) :

$$\mathcal{K}(\psi(t)) := rac{1}{2} \left(\sum_{i=1}^{N_{ ext{desi}}} \left(\psi(r_i(T), z_i(T), T) - \psi(r_0(T), z_0(T), T) \right)^2
ight),$$

Go directly from green to red desired boundary !

JB (Université de Nice)

Optimal control

Nov 2018 31 / 34

Coupled problem equilibrium $(EQ) \leftrightarrow$ resistive diffusion/transport (RD)

	< ⊑	< ₽ >	< ≣ >	< ≣ >	1	うくで
JB (Université de Nice)	Optimal control			Nov 2	2018	32 / 34

Coupled problemequilibrium $(EQ) \leftrightarrow$ resistive diffusion/transport (RD)Grad/Hogan '70 :Queer differential equations.

	< □	<₽►	(日)	 ▲ Ξ 	► Ē	$\mathcal{O}\mathcal{Q}\mathcal{O}$
JB (Université de Nice)	Optimal control			N	ov 2018	32 / 34

Coupled problem	equilibrium (<i>EQ</i>) \leftrightarrow resistive diffusion/t	transport (<i>RD</i>)
Grad/Hogan '70 :	Queer differential equations.	
Find $\mathbf{y}_1, \mathbf{y}_2$ s.t.	$egin{aligned} & EQ(\mathbf{y}_1,\mathbf{y}_2,\mathbf{u}_1)=0\ & RD(\mathbf{y}_1,\mathbf{y}_2,\mathbf{u}_2)=0 \end{aligned}$	2D problem 1D problem

	< ۵	< ₽ < ₹ >	< ≣ >	E	うへで
JB (Université de Nice)	Optimal control		Nov 2	2018	32 / 34

Coupled problem	equilibrium (<i>EQ</i>) \leftrightarrow resistive diffusion/t	transport (<i>RD</i>)
Grad/Hogan '70 :	Queer differential equations.	
Find $\mathbf{y}_1, \mathbf{y}_2$ s.t.	$egin{aligned} & EQ(\mathbf{y}_1,\mathbf{y}_2,\mathbf{u}_1)=0\ & RD(\mathbf{y}_1,\mathbf{y}_2,\mathbf{u}_2)=0 \end{aligned}$	2D problem 1D problem
with		

- state variables $\mathit{flux}\;\psi\approx \mathbf{y}_1$ and $\mathit{current}\;\mathbf{j}_{\mathsf{plasma}}\approx \mathbf{y}_2$;
- control variables in EQ : voltages $\approx \mathbf{u}_1$;
- control variables in RD : beam injection, wave heating, ... \approx **u**₂;

	. ₹	<∂>	•	≣≯	∢ ≣ →	臣	$\mathcal{O}\mathcal{Q}\mathcal{O}$
JB (Université de Nice)	Optimal control				Nov	2018	32 / 34

Coupled problem equilibriu	m (<i>EQ</i>) \leftrightarrow resistive diffusion/t	ransport (<i>RD</i>)
Grad/Hogan '70 : Queer	differential equations.	
Find $\mathbf{y}_1, \mathbf{y}_2$ s.t.	$egin{aligned} & EQ(\mathbf{y}_1,\mathbf{y}_2,\mathbf{u}_1)=0 \ & RD(\mathbf{y}_1,\mathbf{y}_2,\mathbf{u}_2)=0 \end{aligned}$	2D problem 1D problem
with		
• state variables flux \psipprox y	\mathbf{y}_1 and $\mathit{current}\;\mathbf{j}_{plasma}pprox\mathbf{y}_2$;	
• control variables in EQ :	voltages \approx u ₁ :	

• control variables in RD : beam injection, wave heating, ... $\approx \mathbf{u}_2$;

Optimal control for coupled problem $\min_{y_1, y_2, u_1, u_2} C(y_1, y_2, u_1, u_2)$ deviation from desired states.t. $EQ(y_1, y_2, u_1) = 0$ equilibriums.t. $RD(y_1, y_2, u_2) = 0$ resistive diffusion/transport

] ▶	 ◆ □ ▶ < □ ▶ 	< ≣ >	1	うくで
JB (Université de Nice)	Optimal control		Nov 3	2018	32 / 34

Coupled problem equilibriu	m (<i>EQ</i>) \leftrightarrow resistive diffusion/t	ransport (<i>RD</i>)
Grad/Hogan '70 : Queer	differential equations.	
Find $\mathbf{y}_1, \mathbf{y}_2$ s.t.	$egin{aligned} & EQ(\mathbf{y}_1,\mathbf{y}_2,\mathbf{u}_1)=0 \ & RD(\mathbf{y}_1,\mathbf{y}_2,\mathbf{u}_2)=0 \end{aligned}$	2D problem 1D problem
with		
• state variables flux $\psi pprox \mathbf{y}$	$_1$ and $\mathit{current}\;\mathbf{j}_{plasma}pprox\mathbf{y}_2$;	
• control variables in EQ :	voltages $pprox \mathbf{u}_1$;	

• control variables in RD : beam injection, wave heating, ... \approx **u**₂;

Opti	imal control for coupled pr	oblem
m	in $C(\mathbf{y}_1, \mathbf{y}_2, \mathbf{u}_1, \mathbf{u}_2)$	deviation from desired state
y 1, y 2,	, u ₁ , u ₂	
c +	$EQ(\mathbf{y}_1,\mathbf{y}_2,\mathbf{u}_1)=0$	equilibrium
5.1.	$RD(\mathbf{y}_1,\mathbf{y}_2,\mathbf{u}_2)=0$	resistive diffusion/transport

 \implies We need reliable solver for (*EQ*,*RD*), derivatives, sensitivities!

	< □	< ₽ >	<≣	▶ ◀	∎ ►	1	$\mathcal{O}\mathcal{Q}$
B (Université de Nice)	Optimal control				Nov	2018	32 / 34

RD via averaging over a certain label $\rho(s) = \sqrt{\int_{\psi>s} f(\psi) r \, dr \, dz}$:

$$\partial_t \overline{\psi}'(y,t) - rac{1}{\mu_0} rac{\partial}{\partial y} \left(rac{\eta y}{\mathcal{C}^2_{
ho,3}(y,t)} rac{\partial}{\partial y} \left(rac{\mathcal{C}_{
ho,2}(y,t)\mathcal{C}_{
ho,3}(y,t)}{y} \overline{\psi}'(y,t)
ight)
ight) = 0,$$

RD via averaging over a certain label $\rho(s) = \sqrt{\int_{\psi>s} f(\psi) r \, dr \, dz}$:

$$\partial_t \overline{\psi}'(y,t) - rac{1}{\mu_0} rac{\partial}{\partial y} \left(rac{\eta y}{\mathcal{C}^2_{
ho,3}(y,t)} rac{\partial}{\partial y} \left(rac{\mathcal{C}_{
ho,2}(y,t)\mathcal{C}_{
ho,3}(y,t)}{y} \overline{\psi}'(y,t)
ight)
ight) = 0,$$

with geometric coefficients $\{h\}_{\rho}(y) := \int_{\{\rho(r,z)=y\}} \frac{hr dS}{|\nabla \rho|}$:

$$\mathcal{C}_{
ho,3}(y,t):=\{1\}_
ho(y,t), \ \ \mathcal{C}_{
ho,3}(y,t) \ \ :=\{rac{1}{r^2}\}_
ho(y,t), \ \ \mathcal{C}_{
ho,2}(y,t):=\{rac{|
abla
ho|^2}{r^2}\}_
ho(y,t).$$

Conclusion

- The use of optimal control theory for systems governed by partial differential equations has enabled the resolution of inverse problems and the optimization of scenarios
- It has been used for the computation of feedforward control for the poloidal field system
- Control of ill-posed problems is well-posed (stable simulation of scenarios for elongated plasmas)
- Perspective : optimization for coupling equilibrium+ transport

JD [Onversite de Nice

Optimal control

Nov 2018 34 / 34

500

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶